Suppr超能文献

安全错觉:提交给美国食品药品监督管理局的关于人工智能医疗产品审批的报告。

The illusion of safety: A report to the FDA on AI healthcare product approvals.

作者信息

Abulibdeh Rawan, Celi Leo Anthony, Sejdić Ervin

机构信息

Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada.

Laboratory for Computational Physiology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America.

出版信息

PLOS Digit Health. 2025 Jun 5;4(6):e0000866. doi: 10.1371/journal.pdig.0000866. eCollection 2025 Jun.

Abstract

Artificial intelligence is rapidly transforming healthcare, offering promising advancements in diagnosis, treatment, and patient outcomes. However, concerns regarding the regulatory oversight of artificial intelligence driven medical technologies have emerged, particularly with the U.S. Food and Drug Administration's current approval processes. This paper critically examines the U.S. Food and Drug Administration's regulatory framework for artificial intelligence powered healthcare products, highlighting gaps in safety evaluations, post-market surveillance, and ethical considerations. Artificial intelligence's continuous learning capabilities introduce unique risks, as algorithms evolve beyond their initial validation, potentially leading to performance degradation and biased outcomes. Although the U.S. Food and Drug Administration has taken steps to address these challenges, such as artificial intelligence/machine learning-based software as a medical device action plan and proposed regulatory adjustments, significant weaknesses remain, particularly in real-time monitoring, transparency and bias mitigation. This paper argues for a more adaptive, community-engaged regulatory approach that mandates extensive post-market evaluations, requires artificial intelligence developers to disclose training data sources, and establishes enforceable standards for fairness, equity, and accountability. A patient-centered regulatory framework must also integrate diverse perspectives to ensure artificial intelligence technologies serve all populations equitably. By fostering an agile, transparent, and ethics-driven oversight system, the U.S. Food and Drug Administration can balance innovation with patient safety, ensuring that artificial intelligence-driven medical technologies enhance, rather than compromise, healthcare outcomes.

摘要

人工智能正在迅速改变医疗保健领域,在诊断、治疗和患者治疗效果方面带来了有前景的进展。然而,人们对人工智能驱动的医疗技术的监管监督产生了担忧,尤其是在美国食品药品监督管理局目前的审批流程方面。本文批判性地审视了美国食品药品监督管理局对人工智能驱动的医疗保健产品的监管框架,突出了安全评估、上市后监测和伦理考量方面的差距。人工智能的持续学习能力带来了独特的风险,因为算法在初始验证之后不断演变,可能导致性能下降和有偏差的结果。尽管美国食品药品监督管理局已采取措施应对这些挑战,如基于人工智能/机器学习的软件作为医疗器械的行动计划以及提议的监管调整,但重大弱点依然存在,尤其是在实时监测、透明度和偏差缓解方面。本文主张采取一种更具适应性、社区参与的监管方法,要求进行广泛的上市后评估,要求人工智能开发者披露训练数据来源,并建立公平、公正和问责的可执行标准。以患者为中心的监管框架还必须整合不同的观点,以确保人工智能技术公平地服务于所有人群。通过建立一个敏捷、透明和以伦理为驱动的监督系统,美国食品药品监督管理局可以在创新与患者安全之间取得平衡,确保人工智能驱动的医疗技术提升而非损害医疗保健效果。

相似文献

2
Artificial intelligence to revolutionize IBD clinical trials: a comprehensive review.人工智能将彻底改变炎症性肠病临床试验:全面综述。
Therap Adv Gastroenterol. 2025 Feb 23;18:17562848251321915. doi: 10.1177/17562848251321915. eCollection 2025.
4
Utilizing large language models for gastroenterology research: a conceptual framework.利用大语言模型进行胃肠病学研究:一个概念框架。
Therap Adv Gastroenterol. 2025 Apr 1;18:17562848251328577. doi: 10.1177/17562848251328577. eCollection 2025.

本文引用的文献

5
Community-engaged artificial intelligence research: A scoping review.社区参与式人工智能研究:一项范围综述。
PLOS Digit Health. 2024 Aug 23;3(8):e0000561. doi: 10.1371/journal.pdig.0000561. eCollection 2024 Aug.
7
Regulating advanced artificial agents.规范先进的人工智能体。
Science. 2024 Apr 5;384(6691):36-38. doi: 10.1126/science.adl0625. Epub 2024 Apr 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验