Division of Biostatistics and Health Data Science, University of Minnesota, Minneapolis, MN, 55455, USA.
Department of Statistics, Florida State University, Tallahassee, FL, 32306, USA.
Nat Commun. 2024 Jul 18;15(1):6072. doi: 10.1038/s41467-024-50385-y.
Mendelian randomization (MR) uses genetic variants as instrumental variables (IVs) to investigate causal relationships between traits. Unlike conventional MR, cis-MR focuses on a single genomic region using only cis-SNPs. For example, using cis-pQTLs for a protein as exposure for a disease opens a cost-effective path for drug target discovery. However, few methods effectively handle pleiotropy and linkage disequilibrium (LD) of cis-SNPs. Here, we propose cisMR-cML, a method based on constrained maximum likelihood, robust to IV assumption violations with strong theoretical support. We further clarify the severe but largely neglected consequences of the current practice of modeling marginal, instead of conditional genetic effects, and only using exposure-associated SNPs in cis-MR analysis. Numerical studies demonstrated our method's superiority over other existing methods. In a drug-target analysis for coronary artery disease (CAD), including a proteome-wide application, we identified three potential drug targets, PCSK9, COLEC11 and FGFR1 for CAD.
孟德尔随机化(MR)使用遗传变异作为工具变量(IVs)来研究性状之间的因果关系。与传统的 MR 不同,顺式-MR 仅使用顺式-SNPs 关注单个基因组区域。例如,使用蛋白质的顺式-pQTL 作为疾病的暴露,可以为药物靶点发现开辟一条具有成本效益的途径。然而,很少有方法能够有效地处理顺式-SNPs 的多效性和连锁不平衡(LD)。在这里,我们提出了 cisMR-cML,这是一种基于约束极大似然的方法,对 IV 假设违反具有很强的理论支持,稳健。我们进一步阐明了当前在顺式-MR 分析中仅对边际而不是条件遗传效应建模,并仅使用与暴露相关的 SNPs 的做法所带来的严重但在很大程度上被忽视的后果。数值研究表明,我们的方法优于其他现有方法。在对冠状动脉疾病(CAD)进行药物靶点分析中,包括对蛋白质组的应用,我们确定了三个潜在的药物靶点,即 PCSK9、COLEC11 和 FGFR1 用于 CAD。