Suppr超能文献

使用基于可穿戴设备的算法对SARS-CoV-2感染进行远程早期检测:COVID-RED研究结果,一项前瞻性随机单盲交叉试验。

Remote early detection of SARS-CoV-2 infections using a wearable-based algorithm: Results from the COVID-RED study, a prospective randomised single-blinded crossover trial.

作者信息

Zwiers Laura C, Brakenhoff Timo B, Goodale Brianna M, Veen Duco, Downward George S, Kovacevic Vladimir, Markovic Andjela, Mitratza Marianna, van Willigen Marcel, Franks Billy, van de Wijgert Janneke, Montes Santiago, Korkmaz Serkan, Kjellberg Jakob, Risch Lorenz, Conen David, Risch Martin, Grossman Kirsten, Weideli Ornella C, Rispens Theo, Bouwman Jon, Folarin Amos A, Bai Xi, Dobson Richard, Cronin Maureen, Grobbee Diederick E

机构信息

Julius Clinical, Zeist, The Netherlands.

Department of Global Health and Bioethics, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands.

出版信息

PLoS One. 2025 Jun 5;20(6):e0325116. doi: 10.1371/journal.pone.0325116. eCollection 2025.

Abstract

BACKGROUND

Rapid and early detection of SARS-CoV-2 infections, especially during the pre- or asymptomatic phase, could aid in reducing virus spread. Physiological parameters measured by wearable devices can be efficiently analysed to provide early detection of infections. The COVID-19 Remote Early Detection (COVID-RED) trial investigated the use of a wearable device (Ava bracelet) for improved early detection of SARS-CoV-2 infections in real-time.

TRIAL DESIGN

Prospective, single-blinded, two-period, two-sequence, randomised controlled crossover trial.

METHODS

Subjects wore a medical device and synced it with a mobile application in which they also reported symptoms. Subjects in the experimental condition received real-time infection indications based on an algorithm using both wearable device and self-reported symptom data, while subjects in the control arm received indications based on daily symptom-reporting only. Subjects were asked to get tested for SARS-CoV-2 when receiving an app-generated alert, and additionally underwent periodic SARS-CoV-2 serology testing. The overall and early detection performance of both algorithms was evaluated and compared using metrics such as sensitivity and specificity.

RESULTS

A total of 17,825 subjects were randomised within the study. Subjects in the experimental condition received an alert significantly earlier than those in the control condition (median of 0 versus 7 days before a positive SARS-CoV-2 test). The experimental algorithm achieved high sensitivity (93.8-99.2%) but low specificity (0.8-4.2%) when detecting infections during a specified period, while the control algorithm achieved more moderate sensitivity (43.3-46.4%) and specificity (66.4-65.0%). When detecting infection on a given day, the experimental algorithm also achieved higher sensitivity compared to the control algorithm (45-52% versus 28-33%), but much lower specificity (38-50% versus 93-97%).

CONCLUSIONS

Our findings highlight the potential role of wearable devices in early detection of SARS-CoV-2. The experimental algorithm overestimated infections, but future iterations could finetune the algorithm to improve specificity and enable it to differentiate between respiratory illnesses.

TRIAL REGISTRATION

Netherlands Trial Register number NL9320.

摘要

背景

快速且早期检测严重急性呼吸综合征冠状病毒2(SARS-CoV-2)感染,尤其是在感染前期或无症状阶段,有助于减少病毒传播。可穿戴设备测量的生理参数能够得到有效分析,以实现感染的早期检测。“新冠远程早期检测(COVID-RED)”试验研究了使用一种可穿戴设备(艾娃手环)来改进SARS-CoV-2感染的实时早期检测。

试验设计

前瞻性、单盲、两阶段、两序列随机对照交叉试验。

方法

受试者佩戴一种医疗设备,并将其与一款移动应用程序同步,他们还需在该应用程序中报告症状。试验组受试者基于一种使用可穿戴设备和自我报告症状数据的算法接收实时感染提示,而对照组受试者仅基于每日症状报告接收提示。当收到应用程序生成的警报时,受试者被要求进行SARS-CoV-2检测,此外还接受定期的SARS-CoV-2血清学检测。使用敏感性和特异性等指标评估并比较了两种算法的总体和早期检测性能。

结果

共有17825名受试者被纳入该研究并随机分组。试验组受试者比对照组受试者更早收到警报(SARS-CoV-2检测呈阳性前中位数为0天对7天)。在特定时间段检测感染时,试验算法具有较高的敏感性(93.8%-99.2%)但特异性较低(0.8%-4.2%),而对照算法的敏感性(43.3%-46.4%)和特异性(66.4%-65.0%)则较为适中。在给定日期检测感染时,试验算法与对照算法相比也具有更高的敏感性(45%-52%对28%-33%),但特异性低得多(38%-50%对93%-97%)。

结论

我们的研究结果凸显了可穿戴设备在SARS-CoV-2早期检测中的潜在作用。试验算法高估了感染情况,但未来的迭代版本可对算法进行微调以提高特异性,并使其能够区分呼吸道疾病。

试验注册号

荷兰试验注册号NL9320

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aada/12140236/574805d517b3/pone.0325116.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验