Suppr超能文献

利用可穿戴传感器和可解释机器学习算法对新冠病毒病进行被动检测。

Passive detection of COVID-19 with wearable sensors and explainable machine learning algorithms.

作者信息

Gadaleta Matteo, Radin Jennifer M, Baca-Motes Katie, Ramos Edward, Kheterpal Vik, Topol Eric J, Steinhubl Steven R, Quer Giorgio

机构信息

Scripps Research Translational Institute, 3344N Torrey Pines Ct Plaza Level, La Jolla, CA, 92037, USA.

CareEvolution, 625N Main Street, Ann Arbor, MI, 48104, USA.

出版信息

NPJ Digit Med. 2021 Dec 8;4(1):166. doi: 10.1038/s41746-021-00533-1.

Abstract

Individual smartwatch or fitness band sensor data in the setting of COVID-19 has shown promise to identify symptomatic and pre-symptomatic infection or the need for hospitalization, correlations between peripheral temperature and self-reported fever, and an association between changes in heart-rate-variability and infection. In our study, a total of 38,911 individuals (61% female, 15% over 65) have been enrolled between March 25, 2020 and April 3, 2021, with 1118 reported testing positive and 7032 negative for COVID-19 by nasopharyngeal PCR swab test. We propose an explainable gradient boosting prediction model based on decision trees for the detection of COVID-19 infection that can adapt to the absence of self-reported symptoms and to the available sensor data, and that can explain the importance of each feature and the post-test-behavior for the individuals. We tested it in a cohort of symptomatic individuals who exhibited an AUC of 0.83 [0.81-0.85], or AUC = 0.78 [0.75-0.80] when considering only data before the test date, outperforming state-of-the-art algorithm in these conditions. The analysis of all individuals (including asymptomatic and pre-symptomatic) when self-reported symptoms were excluded provided an AUC of 0.78 [0.76-0.79], or AUC of 0.70 [0.69-0.72] when considering only data before the test date. Extending the use of predictive algorithms for detection of COVID-19 infection based only on passively monitored data from any device, we showed that it is possible to scale up this platform and apply the algorithm in other settings where self-reported symptoms can not be collected.

摘要

在2019冠状病毒病(COVID-19)背景下,个人智能手表或健身手环的传感器数据已显示出在识别有症状和症状前感染、住院需求、外周温度与自我报告发热之间的相关性以及心率变异性变化与感染之间的关联方面具有前景。在我们的研究中,2020年3月25日至2021年4月3日期间共招募了38911人(61%为女性,15%年龄在65岁以上),通过鼻咽拭子PCR检测,1118人报告COVID-19检测呈阳性,7032人呈阴性。我们提出了一种基于决策树的可解释梯度提升预测模型,用于检测COVID-19感染,该模型能够适应自我报告症状的缺失和可用的传感器数据,并能解释每个特征的重要性以及个体的检测后行为。我们在一组有症状个体中对其进行了测试,其曲线下面积(AUC)为0.83[0.81 - 0.85],若仅考虑检测日期之前的数据,AUC = 0.78[0.75 - 0.80],在这些条件下优于现有算法。当排除自我报告症状时,对所有个体(包括无症状和症状前个体)进行分析,AUC为0.78[0.76 - 0.79],若仅考虑检测日期之前的数据,AUC为0.70[0.69 - 0.72]。仅基于来自任何设备的被动监测数据扩展用于检测COVID-19感染的预测算法的应用,我们表明扩大该平台规模并将该算法应用于无法收集自我报告症状的其他环境是可行的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cade/8655005/19a6ad1919f6/41746_2021_533_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验