Cedillo-Servin Gerardo, Al-Jehani Essa A A, Rossy Tamara, Teixeira Simão P B, Sage Fanny, Domingues Rui M A, Raman Ritu, Castilho Miguel
Department of Orthopedics, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, The Netherlands; Biomaterial Engineering & Biofabrication, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
Biomaterial Engineering & Biofabrication, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Department of Anatomy and Embryology, Leiden University Medical Center, The Netherlands; Biomedical Research Center, Qatar University, Doha, P.O. Box 2713, Qatar.
Trends Biotechnol. 2025 Jun 4. doi: 10.1016/j.tibtech.2025.05.004.
Organized cell architecture and dynamic forces are key for (re)creating native-like tissue function (e.g., contractile soft tissues). However, few studies have explored the combined effects of material-guided 3D cell organization with mechanical stimulation. Herein we underscore the importance of converging material-driven guidance of cell organization with stimulus-responsive actuation for multiscale biomaterial design, outlining strategies to engineer such biomaterials. Given the state-of-the-art biomaterials for multiscale spatiotemporally controlled organization and actuation, we propose a synergistic approach ('meta-adaptive biomaterials') that unlocks complexity in engineered biomaterials, harnessing adaptive feedback pathways arising from cell-material interactions. These can be designed similarly to cell-extracellular matrix (ECM) interactions to reinforce user-specified behaviors and yield functionalities that resemble or surpass native tissues, expanding possibilities in tissue engineering, in vitro models, and biohybrid robotics.
有组织的细胞结构和动态力是(重新)创造类似天然组织功能(如收缩性软组织)的关键。然而,很少有研究探讨材料引导的3D细胞组织与机械刺激的联合作用。在此,我们强调了将材料驱动的细胞组织引导与刺激响应驱动相结合以进行多尺度生物材料设计的重要性,并概述了设计此类生物材料的策略。鉴于用于多尺度时空控制组织和驱动的先进生物材料,我们提出了一种协同方法(“元自适应生物材料”),该方法解锁了工程生物材料的复杂性,利用了细胞-材料相互作用产生的自适应反馈途径。这些可以设计成类似于细胞-细胞外基质(ECM)相互作用,以强化用户指定的行为并产生类似于或超越天然组织的功能,从而扩大组织工程、体外模型和生物混合机器人技术的可能性。