Suppr超能文献

用于预测地表沉降的SHAP增强解释性MGTWR-CNN-BILSTM-AM框架:以上海市为例

SHAP-enhanced interpretive MGTWR-CNN-BILSTM-AM framework for predicting surface subsidence: a case study of Shanghai municipality.

作者信息

Wen-Jiang Long, Xue-Xiang Yu, Ming-Fei Zhu, Li Xue, Guang-Hui Zhang, Lin-Lin Wang

机构信息

School of Geomatics, Anhui University of Science and Technology, Huainan, 232001, China.

Urban 3D Real Scene and Intelligent Security Monitoring Joint Laboratory of Anhui Province, Huainan, 232001, China.

出版信息

Sci Rep. 2025 Jun 5;15(1):19771. doi: 10.1038/s41598-025-95694-4.

Abstract

Urban expansion and subsurface resource exploitation have intensified ground subsidence, posing significant geological risks. Conventional prediction models often overlook multi-scale spatiotemporal effects that critically influence accuracy. This study proposes an integrated MGTWR-CNN-BiLSTM-AM (MGCBA) model to address this gap. Utilizing SBAS-InSAR-derived deformation data from Shanghai's primary subsidence zones, validated through GNSS and PS-InSAR observations, we developed a Multi-scale Geographically and Temporally Weighted Regression (MGTWR) framework. This model quantifies nonlinear spatiotemporal relationships between subsidence and driving factors, including monthly-scale variables (groundwater extraction, precipitation) and annual-scale parameters (land use, soil type), generating dynamic weight matrices. The integrated CNN-BiLSTM-AM (CBA) deep learning network extracts critical time-series features to optimize spatiotemporal weights adaptively. Experimental results demonstrate a prediction accuracy of 0.99347 (RMSE: 1.8643 mm), outperforming the standalone CBA model (0.98494) by 0.85%. SHAP value analysis identifies monthly groundwater levels, soil moisture, and annual-scale soil type/DEM as dominant contributors to Shanghai's urban core subsidence. The proposed multi-scale spatiotemporal modeling framework advances surface deformation prediction by enhancing the interpretability of key drivers under spatiotemporally variable conditions.

摘要

城市扩张和地下资源开采加剧了地面沉降,带来了重大地质风险。传统预测模型往往忽视了对精度有至关重要影响的多尺度时空效应。本研究提出了一种集成的MGTWR-CNN-BiLSTM-AM(MGCBA)模型来弥补这一差距。利用来自上海主要沉降区的基于小基线集合成孔径雷达干涉测量(SBAS-InSAR)得出的变形数据,并通过全球导航卫星系统(GNSS)和永久散射体合成孔径雷达干涉测量(PS-InSAR)观测进行验证,我们开发了一个多尺度地理和时间加权回归(MGTWR)框架。该模型量化了沉降与驱动因素之间的非线性时空关系,这些驱动因素包括月度尺度变量(地下水抽取、降水)和年度尺度参数(土地利用、土壤类型),生成动态权重矩阵。集成的卷积神经网络-双向长短期记忆网络-注意力机制(CNN-BiLSTM-AM,CBA)深度学习网络提取关键时间序列特征,以自适应地优化时空权重。实验结果表明预测精度为0.99347(均方根误差:1.8643毫米),比独立的CBA模型(0.98494)高出0.85%。SHAP值分析确定月度地下水位、土壤湿度以及年度尺度的土壤类型/数字高程模型是上海城市核心区沉降的主要贡献因素。所提出的多尺度时空建模框架通过增强时空可变条件下关键驱动因素的可解释性,推进了地表变形预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/898d/12141653/6ed2cfaa4cb0/41598_2025_95694_Fig1_HTML.jpg

相似文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验