Suppr超能文献

基于人工智能的全景X线片中牙内陷的检测

Artificial intelligence-based detection of dens invaginatus in panoramic radiographs.

作者信息

Sarı Ayse Hanne, Sarı Hasan, Magat Guldane

机构信息

Department of Oral and Maxillofacial Radiology, Faculty of Dentistry, Necmettin Erbakan University, Beyşehir Avenue, Bağlarbaşı Street, 42090, Meram/Konya, Turkey.

Software Engineer in Private Practice, İstanbul, Turkey.

出版信息

BMC Oral Health. 2025 Jun 5;25(1):917. doi: 10.1186/s12903-025-06317-3.

Abstract

OBJECTIVE

The aim of this study was to automatically detect teeth with dens invaginatus (DI) in panoramic radiographs using deep learning algorithms and to compare the success of the algorithms.

MATERIALS AND METHODS

For this purpose, 400 panoramic radiographs with DI were collected from the faculty database and separated into 60% training, 20% validation and 20% test images. The training and validation images were labeled by oral, dental and maxillofacial radiologists and augmented with various augmentation methods, and the improved models were asked for the images allocated for the test phase and the results were evaluated according to performance measures including accuracy, sensitivity, F1 score and mean detection time.

RESULTS

According to the test results, YOLOv8 achieved a precision, sensitivity and F1 score of 0.904 and was the fastest detection model with an average detection time of 0.041. The Faster R-CNN model achieved 0.912 precision, 0.904 sensitivity and 0.907 F1 score, with an average detection time of 0.1 s. The YOLOv9 algorithm showed the most successful performance with 0.946 precision, 0.930 sensitivity, 0.937 F1 score value and the average detection speed per image was 0.158 s.

CONCLUSION

According to the results obtained, all models achieved over 90% success. YOLOv8 was relatively more successful in detection speed and YOLOv9 in other performance criteria. Faster R-CNN ranked second in all criteria.

摘要

目的

本研究的目的是使用深度学习算法在全景X线片中自动检测窝状牙内陷(DI)牙齿,并比较这些算法的成功率。

材料与方法

为此,从学院数据库收集了400张有DI的全景X线片,并将其分为60%用于训练、20%用于验证和20%用于测试的图像。训练和验证图像由口腔、牙科和颌面放射科医生进行标注,并采用各种增强方法进行增强,然后将改进后的模型应用于分配给测试阶段的图像,并根据包括准确率、灵敏度、F1分数和平均检测时间在内的性能指标对结果进行评估。

结果

根据测试结果,YOLOv8的精确率、灵敏度和F1分数达到0.904,是检测速度最快的模型,平均检测时间为0.041秒。Faster R-CNN模型的精确率为0.912,灵敏度为0.904,F1分数为0.907,平均检测时间为0.1秒。YOLOv9算法表现最为出色,精确率为0.946,灵敏度为0.930,F1分数为0.937,每张图像的平均检测速度为0.158秒。

结论

根据获得的结果,所有模型的成功率均超过90%。YOLOv8在检测速度方面相对更成功,而YOLOv9在其他性能标准方面更成功。Faster R-CNN在所有标准中排名第二。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0e02/12142872/e174277144cb/12903_2025_6317_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验