Ji Qingsong, Li Yuxi, Wang Zihao, Tan Xushen, Sun Lu, Li Shuang, Wang Chuchu, Chen Riqing, Chu Fuxiang, Nan Jingya, Wang Chunpeng
National Key Laboratory for Development and Utilization of Forest Food Resources, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry;Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing, Jiangsu, 210042, China.
Co‑Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
Small. 2025 Aug;21(31):e2504643. doi: 10.1002/smll.202504643. Epub 2025 Jun 5.
Hydrogel sensors are emerging as one promising device for wearable electronics by virtue of intrinsic flexibility and stimuli sensitivity. In particular, MXene hydrogel sensors possess superior properties of high sensitivity and wide strain sensing range, because MXene nanosheets have unique flake structure and metal-like electronic conductivity. However, the existing defects of aggregation and oxidation in MXene nanosheets would easily weaken the toughness and conductivity of hydrogel matrices, thus compromising the mechanical flexibility and strain sensitivity of hydrogel sensors. Here a class of MXene hydrogel sensors is proposed by in situ polymerization and non-covalent interactions. These hydrogel sensors exhibit high stretchability and high toughness simultaneously, reaching stretchability of 1100% and fracture energy of 5374 J m. Meanwhile, the introduced catechol groups of dopamine-grafted carboxymethyl cellulose sodium (DA@CMC) endow the hydrogel sensor with excellent anti-oxidation, adhesion, and long-term conductivity, enabling this sensor to show desirable strain sensitivity with a fast response time of 102 ms and a wide sensing scope of 0-800% strain. Moreover, the integration of a strain-sensitive hydrogel sensor with a multicolor display demonstrates system-level applications for real-time visual motion monitoring. This work paves the way for the development of body-conformable monitoring devices, holding great potential in wearable electronics that require visual functionalities.
水凝胶传感器凭借其固有的柔韧性和刺激敏感性,正成为可穿戴电子产品中一种很有前景的器件。特别是,MXene水凝胶传感器具有高灵敏度和宽应变传感范围的优异特性,因为MXene纳米片具有独特的片状结构和类金属电子导电性。然而,MXene纳米片中现有的聚集和氧化缺陷会轻易削弱水凝胶基质的韧性和导电性,从而损害水凝胶传感器的机械柔韧性和应变敏感性。在此,通过原位聚合和非共价相互作用提出了一类MXene水凝胶传感器。这些水凝胶传感器同时表现出高拉伸性和高韧性,拉伸率达到1100%,断裂能为5374 J/m。同时,引入的多巴胺接枝羧甲基纤维素钠(DA@CMC)中的儿茶酚基团赋予水凝胶传感器优异的抗氧化性、粘附性和长期导电性,使该传感器能够以102 ms的快速响应时间和0-800%应变的宽传感范围表现出理想的应变敏感性。此外,应变敏感水凝胶传感器与多色显示器的集成展示了用于实时视觉运动监测的系统级应用。这项工作为贴合身体的监测设备的开发铺平了道路,在需要视觉功能的可穿戴电子产品中具有巨大潜力。