Suppr超能文献

聚合物离子液体改性剂作为离子诱导交联剂和功能增强剂:用于柔性电子器件的多功能明胶水凝胶的简便制备

Polymeric ionic liquid modifier as ion-induced crosslinker and functional enhancer: Facile fabrication of multifunctional gelatin hydrogels for flexible electronics.

作者信息

Song Wenqi, Chen Haonan, Lu Puang, Miao Zongcheng, Zhao Yuzhen, He Zemin, Ren Zhihua, Nica Valentin, Qian Liwei

机构信息

Technological Institute of Materials & Energy Science (TIMES), Key Laboratory of Liquid Crystal Polymers based Flexible Display Technology in National Petroleum and Chemical Industry, Xi'an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, School of Electronic Information, Xijing University, Xi'an 710123, PR China.

College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China.

出版信息

Int J Biol Macromol. 2025 Jul;318(Pt 4):145296. doi: 10.1016/j.ijbiomac.2025.145296. Epub 2025 Jun 16.

Abstract

Gelatin-based ionic conductive hydrogels (ICHs) are promising materials for flexible electronics due to their favorable intrinsic properties, but achieving superior mechanical performance, high conductivity, multifunctionality, and simple fabrication simultaneously is challenging. Inspired by the ion-induced salting-out effect and the tunability of polymeric ionic liquids, poly(1-vinyl-3-carboxymethyl imidazolium fluoride) (PVCIF) was synthesized as an advanced macromolecular modifier and employed in a one-step soaking method to construct gelatin-based ICHs. The fluoride anions in PVCIF induce a salting-out effect, promoting gelatin aggregation and forming robust protein hydrogels. The carboxyl and imidazolium groups in PVCIF engage in multiple non-covalent interactions with gelatin chains, improving energy dissipation and toughness. Additionally, the incorporation of cellulose nanofibers (CNFs) into the hydrogel to create a dual network structure further enhances its mechanical strength and toughness. The optimized hydrogels exhibited excellent mechanical strength (1.28 MPa), stretchability (327.1 %), toughness (2.91 MJ m), high electrical conductivity (4.66 mS cm), sensitivity (gauge factor = 3.94), antibacterial activity (> 99.2 %), and biocompatibility (cell viability > 95 %). Furthermore, they also displayed temperature-sensitive adhesiveness, frost resistance, water retention, and remoldability. These combined features and the straightforward fabrication process position the gelatin-based ICHs as highly promising for advanced applications in wearable strain sensors for human motion detection.

摘要

基于明胶的离子导电水凝胶(ICHs)因其良好的固有特性而成为柔性电子领域颇具前景的材料,但要同时实现卓越的机械性能、高导电性、多功能性和简单的制备工艺仍具有挑战性。受离子诱导盐析效应和聚合离子液体可调节性的启发,合成了聚(1-乙烯基-3-羧甲基咪唑氟化物)(PVCIF)作为一种先进的大分子改性剂,并采用一步浸泡法构建基于明胶的ICHs。PVCIF中的氟阴离子会引发盐析效应,促进明胶聚集并形成坚固的蛋白质水凝胶。PVCIF中的羧基和咪唑基团与明胶链发生多种非共价相互作用,提高了能量耗散和韧性。此外,将纤维素纳米纤维(CNFs)引入水凝胶中以形成双网络结构,进一步增强了其机械强度和韧性。优化后的水凝胶表现出优异的机械强度(1.28MPa)、拉伸性(327.1%)、韧性(2.91MJ/m)、高电导率(4.66mS/cm)、灵敏度(应变系数=3.94)、抗菌活性(>99.2%)和生物相容性(细胞活力>95%)。此外,它们还表现出温度敏感粘性、抗冻性、保水性和可重塑性。这些综合特性以及简单的制备工艺使基于明胶的ICHs在用于人体运动检测的可穿戴应变传感器的先进应用中极具前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验