Iwasa Kuni H
NIDCD, National Institutes of Health, Bethesda, Maryland.
Biophys J. 2025 Aug 5;124(15):2383-2390. doi: 10.1016/j.bpj.2025.05.029. Epub 2025 Jun 4.
Cochlear outer hair cells (OHCs) have two mechanosensitive elements: the hair bundle (HB) with mechanotrasducer channels and the piezoelectric lateral wall of the cell body. The present report examines how these elements interact with each other by incorporating OHCs into the simplest local cochlear models. In the frequency range, typically above 1 kHz, where capacitive conductance is greater than the ionic conductance, HB conductance drives the piezoelectric cell body and amplified oscillation by countering viscous drag, whereas the cell body increases its stiffness owing to strain-induced polarization, elevating the resonance frequency. Since HB sensitivity is essential for amplification, the resonance is not pure piezoelectric but semi-piezoelectric. In the lower-frequency range, typically lower than 100 Hz, strain-induced polarization contributes to drag, and the HB sensitivity increases cell body stiffness.
耳蜗外毛细胞(OHCs)有两种机械敏感元件:带有机械转导通道的毛束(HB)和细胞体的压电性侧壁。本报告通过将外毛细胞纳入最简单的局部耳蜗模型,研究了这些元件如何相互作用。在通常高于1kHz的频率范围内,电容性电导大于离子电导,毛束电导通过对抗粘性阻力驱动压电性细胞体并放大振荡,而细胞体由于应变诱导极化增加其刚度,提高共振频率。由于毛束敏感性对于放大至关重要,因此这种共振不是纯压电性的,而是半压电性的。在通常低于100Hz的低频范围内,应变诱导极化导致阻力增加,而毛束敏感性增加细胞体刚度。