Li Xinqi, Li Zhaojie, Li Chuang, Tian Fei, Qiao Zhengping, Lei Danni, Wang Chengxin
State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
Natl Sci Rev. 2025 May 10;12(6):nwaf182. doi: 10.1093/nsr/nwaf182. eCollection 2025 Jun.
Achieving stable cycling of lithium metal batteries (LMBs) at high voltages presents a significant challenge due to interfacial instability and uneven lithium-ion transport, leading to dendrite formation and cathode degradation. Constructing a solid-electrolyte interphase (SEI) that facilitates fast and uniform ion transport is crucial for enhancing the stability of electrode structures. However, current research mainly focuses on interfacial instability while neglecting uneven ion transport, which is even more critical. In this study, we develop a novel electrolyte system, PAFE, by incorporating aluminum ethoxide (Al(EtO)), fluoroethylene carbonate (FEC), and pentafluorocyclotriphosphazene (PFPN) into a carbonate-based electrolyte. Al(EtO) serves as a crosslinking agent, facilitating the formation of a three-dimensional polymer network that promotes the uniform deposition of inorganic components such as LiF, LiN, LiP and AlO within the SEI and cathode-electrolyte interphase (CEI). These uniform interphases lower the activation energy for lithium-ion transport, thereby ensuring consistent ion flow and reducing internal stress within the electrodes. As a result, Li||LiNiCoMnO (NCM811) cells with PAFE exhibit exceptional cycling stability, retaining 80% capacity over 140 cycles at a high cut-off voltage of 4.7 V. Furthermore, 1 Ah pouch cells demonstrate excellent cycling performance, highlighting the potential of this electrolyte system for practical high-energy-density LMB applications.
由于界面不稳定性和锂离子传输不均匀,在高电压下实现锂金属电池(LMB)的稳定循环面临重大挑战,这会导致枝晶形成和阴极降解。构建一个有助于快速且均匀离子传输的固体电解质界面(SEI)对于提高电极结构的稳定性至关重要。然而,目前的研究主要集中在界面不稳定性,而忽略了更关键的离子传输不均匀问题。在本研究中,我们通过将乙醇铝(Al(EtO))、氟代碳酸乙烯酯(FEC)和五氟环三磷腈(PFPN)加入到基于碳酸盐的电解质中,开发了一种新型电解质体系PAFE。Al(EtO)作为交联剂,有助于形成三维聚合物网络,促进无机成分如LiF、LiN、LiP和AlO在SEI和阴极-电解质界面(CEI)内均匀沉积。这些均匀的界面降低了锂离子传输的活化能,从而确保离子流一致并降低电极内部应力。结果,采用PAFE的Li||LiNiCoMnO(NCM811)电池表现出卓越的循环稳定性,在4.7 V的高截止电压下140次循环后仍保留80%的容量。此外,1 Ah软包电池展示出优异的循环性能,突出了这种电解质体系在实际高能量密度LMB应用中的潜力。