Suppr超能文献

在EPPI-Reviewer中使用Cochrane随机对照试验分类器能否帮助加快定性证据综合研究的选择?一项回顾性评估。

Can using the Cochrane RCT classifier in EPPI-Reviewer help speed up study selection in qualitative evidence syntheses? A retrospective evaluation.

作者信息

Ames Heather Melanie R, Hestevik Christine Hillestad, Jardim Patricia Sofia Jacobsen, Larsen Martin Smådal, Langøien Lars Jørun, Bergsund Hans Bugge, Borge Tiril Cecilie

机构信息

The Norwegian Institute of Public Health Oslo Norway.

出版信息

Cochrane Evid Synth Methods. 2025 Jan 13;3(1):e70012. doi: 10.1002/cesm.70012. eCollection 2025 Jan.

Abstract

INTRODUCTION

Using machine learning functions, such as study design classifiers, to automatically identify studies that do not meet the inclusion criteria, is one way to speed up the systematic review screening process. As a qualitative study design classifier is yet to be developed, using the Cochrane randomized controlled trial (RCT) classifier in reverse is one possible way to speed up the identification of primary qualitative studies during screening. The objective of this study was to evaluate whether the Cochrane RCT classifier can be used to speed up the study selection process for qualitative evidence synthesis (QES).

METHODS

We performed a retrospective evaluation where we first identified QES. We then extracted the bibliographic information of the included primary qualitative studies in each QES, and uploaded the references into our data management tool, EPPI-Reviewer. We then ran the Cochrane RCT classifier on each group of included studies for each QES.

RESULTS

Eighty-two QES with 2828 unique primary studies were included in the analysis. 56% of the primary studies were classified as unlikely to be an RCT and 40% as being 0-9% likely to be an RCT. 4% were classified as being 10% or more likely to be an RCT. Of these, only 1.7% were classified as being 50% or more likely to be an RCT.

CONCLUSIONS

The Cochrane RCT classifier could be a useful tool to identify primary studies with qualitative study designs to speed up study selection in a QES. However, it is possible that mixed methods studies or qualitative studies conducted as part of a clinical trial may be missed. Further evaluations using the Cochrane RCT classifier on all the references retrieved from the complete literature search is needed to investigate time- and resource savings.

摘要

引言

利用机器学习功能,如研究设计分类器,自动识别不符合纳入标准的研究,是加快系统评价筛选过程的一种方法。由于定性研究设计分类器尚未开发出来,反向使用Cochrane随机对照试验(RCT)分类器是在筛选过程中加快识别主要定性研究的一种可能方法。本研究的目的是评估Cochrane RCT分类器是否可用于加快定性证据综合(QES)的研究选择过程。

方法

我们进行了一项回顾性评估,首先确定QES。然后,我们提取了每个QES中纳入的主要定性研究的书目信息,并将参考文献上传到我们的数据管理工具EPPI-Reviewer中。然后,我们对每个QES中每组纳入的研究运行Cochrane RCT分类器。

结果

分析纳入了82项QES,其中有2828项独特的主要研究。56%的主要研究被分类为不太可能是RCT,40%被分类为有0-9%的可能性是RCT。4%被分类为有10%或更高的可能性是RCT。其中,只有1.7%被分类为有50%或更高的可能性是RCT。

结论

Cochrane RCT分类器可能是一种有用的工具,可用于识别具有定性研究设计的主要研究,以加快QES中的研究选择。然而,有可能会遗漏混合方法研究或作为临床试验一部分进行的定性研究。需要对从完整文献检索中检索到的所有参考文献使用Cochrane RCT分类器进行进一步评估,以调查节省的时间和资源。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验