Suppr超能文献

多污染物暴露对肝脂肪变性的影响:基于机器学习对多污染物协同效应的调查

The impact of multipollutant exposure on hepatic steatosis: a machine learning-based investigation into multipollutant synergistic effects.

作者信息

Yan Chunying, Zhu Zhanfang, Guo Xueyan, Zong Wei, Liu Guisheng, Jin Yan, Cui Shiyuan, Liu Fuqiang, Gao Shujuan

机构信息

Department of Gastroenterology, Shaanxi Provincial People's Hospital, Xi'an, China.

Xi'an Jiaotong University Hospital, Xi'an, China.

出版信息

Front Public Health. 2025 May 22;13:1598639. doi: 10.3389/fpubh.2025.1598639. eCollection 2025.

Abstract

INTRODUCTION

This study examines the synergistic effects of multi-pollutant exposure on hepatic lipid accumulation in non-alcoholic fatty liver disease (NAFLD) through the application of an explainable machine learning framework. This approach addresses the limitations of traditional models in managing complex environmental interactions.

METHODS

Using data from the National Health and Nutrition Examination Survey (NHANES) 2015-2016 (n = 494), we developed a stacked ensemble model that integrates LASSO, support vector machines (SVM), neural networks, and XGBoost to analyze urinary biomarkers of heavy metals, polycyclic aromatic hydrocarbons (PAHs), and volatile organic compounds (VOCs). The Environmental Pollution Exposure Index (EPEI) was constructed to quantify cumulative effects, with SHAP values employed to identify critical pollutants and thresholds. Subgroup analyses were conducted to assess heterogeneity across different Body Mass Index (BMI), diabetes, and hyperlipidemia statuses.

RESULTS

2-Hydroxynaphthalene was identified as the predominant pollutant (SHAP = 0.89), with cobalt and VOC metabolites (e.g., N-Acetyl-S-(2-carbamoylethyl)-L-cysteine) also contributing significantly. The EPEI demonstrated strong associations with obesity-related parameters (PLF: 7.02 vs. 3.41 in high/low-exposure groups,  < 0.0001) and hyperlipidemia (OR = 2.28 vs. 1.08,  = 2.7e-06). The model demonstrated an amplification of effects in subgroups with severe obesity (OR = 2.66, 95% CI: 2.08-3.24) and impaired fasting glucose.

DISCUSSION

This study establishes a machine learning framework for assessing multi-pollutant risks in NAFLD, identifying 2-Hydroxynaphthalene as a significant hepatotoxicant and EPEI as a quantifiable metric of exposure. The findings highlight the metabolic vulnerabilities associated with obesity and early dysglycemia, thereby informing precision prevention strategies. Methodological advancements integrate exposomics with interpretable artificial intelligence, facilitating targeted interventions in environmental health.

摘要

引言

本研究通过应用可解释的机器学习框架,探讨多污染物暴露对非酒精性脂肪性肝病(NAFLD)肝脏脂质积累的协同作用。这种方法解决了传统模型在处理复杂环境相互作用方面的局限性。

方法

利用2015 - 2016年美国国家健康与营养检查调查(NHANES)的数据(n = 494),我们开发了一种堆叠集成模型,该模型整合了套索回归(LASSO)、支持向量机(SVM)、神经网络和极端梯度提升(XGBoost),以分析重金属、多环芳烃(PAHs)和挥发性有机化合物(VOCs)的尿液生物标志物。构建了环境污染暴露指数(EPEI)来量化累积效应,并使用SHAP值来识别关键污染物和阈值。进行亚组分析以评估不同体重指数(BMI)、糖尿病和高脂血症状态下的异质性。

结果

2 - 羟基萘被确定为主要污染物(SHAP = 0.89),钴和挥发性有机化合物代谢物(如N - 乙酰 - S - (2 - 氨甲酰乙基) - L - 半胱氨酸)也有显著贡献。EPEI与肥胖相关参数显示出强烈关联(高/低暴露组的PLF:7.02对3.41,<0.0001)和高脂血症(OR = 2.28对1.08,= 2.7e - 06)。该模型在重度肥胖(OR = 2.66,95% CI:2.08 - 3.24)和空腹血糖受损的亚组中显示出效应放大。

讨论

本研究建立了一个用于评估NAFLD中多污染物风险的机器学习框架,确定2 - 羟基萘为一种重要的肝毒性物质,EPEI为一种可量化的暴露指标。研究结果突出了与肥胖和早期血糖异常相关的代谢脆弱性,从而为精准预防策略提供了依据。方法学的进步将暴露组学与可解释的人工智能相结合,促进了环境卫生方面的靶向干预。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7752/12137238/2c2d4816a45a/fpubh-13-1598639-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验