Suppr超能文献

在中低收入国家一家诊所使用本地设计的肺部体模对低分割立体定向放疗计划进行临床实施的可行性研究。

A Feasibility Study for Clinical Implementation of hypo fractionated SBRT Program at a Clinic in an LMIC Using Locally Designed Lung Phantom.

作者信息

Quaye Abigail N M, Addison Eric C D K, Osei Ernest, Yorke Afua A

机构信息

Oncology Directorate Komfo Anokye Teaching Hospital, Kumasi, Ghana.

Medical Physics Department, Grand River Regional Cancer Centre, Kitchener, Ontario.

出版信息

Adv Radiat Oncol. 2025 Mar 7;10(6):101752. doi: 10.1016/j.adro.2025.101752. eCollection 2025 Jun.

Abstract

PURPOSE

This study aims to assess the feasibility of implementing a hypofractionated radiation therapy (HFRT) program at the Oncology Directorate of Komfo Anokye Teaching Hospital in Ghana, addressing specific infrastructure limitations that hinder patient care and treatment efficiency. Hence, we conducted a feasibility study to start a HFRT lung stereotactic body radiation therapy (SBRT) program using currently available resources. The goal is to alleviate the burden on patients and health care providers, particularly in the context of limited resources.

METHODS AND MATERIALS

A lung phantom was designed from locally sourced materials consisting of wood slabs to mimic the lung, a perspex tank filled with water for tissue equivalence, and a 3-cm diameter acrylic ball to simulate the tumor. A motion platform was also designed for the phantom to simulate patients breathing in the superior-inferior direction. We acquired 3 computed tomography (CT) scan data sets using a slow CT scan technique for target motions of 0 cm (no_target_motion), 0.5 cm (0.5-cm_target_motion), and 1 cm (1-cm_target_motion) displacements. Treatment plans were generated for each phantom CT image data set using 9-field 6-Mega-Voltage (MV) photon beams in the eclipse treatment planning system. We also generated a treatment plan using an actual patient CT data set to assess the doses to target in the lung and critical organs at risk during a typical lung SBRT treatment. The quality of each treatment plan was evaluated using the near maximum (D), near minimum (D), mean (D), V, V, V, heterogeneity index (HI), conformity index (CI), the ratio of 50% prescription isodose volume to the PTV volume, (R), maximum dose (in % of dose prescribed) at 2 cm from PTV in any direction (D, Gy) and dose-volume-histograms for the planning target volume (PTV). The near maximum (D), mean, V, V, V, and V values were used as the dose metrics to evaluate the dose to the lung. Maximum dose was used to evaluate the dose to the spinal cord, and the maximum and mean doses were used to evaluate doses to the esophagus, heart, trachea, and ribs.

RESULTS

We quantitatively assessed the quality of the phantom treatment plans by calculating the CI, HI, R and D for each plan. The CI values for the PTV for the no_target_motion, 0.5-cm_target_motion, and 1-cm_target_motion are 1.07, 1.08, and 1.06, respectively. The HIs for the PTV for no_target_motion, 0.5-cm_target_motion, and 1-cm_target_motion are 1.20, 1.10, and 1.20 respectively. The R for the no_target_motion, 0.5-cm_target_motion, and 1-cm_target_motion are 3.98, 3.86, and 3.82, respectively, and the corresponding D values are 27.30, 31.64, and 30.47, respectively. The CI, HI, R and D values for the PTV using the actual patient CT data set are 1.08, 1.22, 7.1, and 58.7 respectively. Therefore, our data demonstrate good dose conformity and heterogeneity within the PTV, with a sharp dose fall-off for all cases. The point dose measurements made in the phantom also show good agreement with treatment planning data.

CONCLUSIONS

Our results demonstrate that implementing HFRT using 3-dimensional conformal radiation therapy for lung SBRT is feasible with the current infrastructure of our institution. Although the proposed treatment plan is effective, future research on motion management and image guidance technologies is necessary to optimize treatment fidelity. These findings suggest that HFRT could be a viable option for addressing resource constraints in radiation therapy delivery in similar settings.

摘要

目的

本研究旨在评估在加纳孔福·阿诺凯教学医院肿瘤科室实施大分割放射治疗(HFRT)方案的可行性,解决阻碍患者护理和治疗效率的特定基础设施限制问题。因此,我们开展了一项可行性研究,以利用现有资源启动HFRT肺部立体定向体部放射治疗(SBRT)方案。目标是减轻患者和医疗服务提供者的负担,尤其是在资源有限的情况下。

方法和材料

用当地采购的材料设计了一个肺部体模,包括用于模拟肺部的木板、装满水以实现组织等效性的有机玻璃水箱以及用于模拟肿瘤的直径3厘米的丙烯酸球。还为体模设计了一个运动平台,以模拟患者在上下方向的呼吸。我们使用慢速CT扫描技术获取了3组计算机断层扫描(CT)数据集,用于0厘米(无靶区运动)、0.5厘米(0.5厘米靶区运动)和1厘米(1厘米靶区运动)位移的靶区运动。在Eclipse治疗计划系统中,使用9野6兆伏(MV)光子束为每个体模CT图像数据集生成治疗计划。我们还使用实际患者的CT数据集生成了一个治疗计划,以评估典型肺部SBRT治疗期间肺部靶区和危及器官的剂量。使用近最大值(D)、近最小值(D)、平均值(D)、V、V、V、异质性指数(HI)、适形指数(CI)、50%处方等剂量体积与计划靶体积的比值(R)、在距PTV任何方向2厘米处的最大剂量(处方剂量的百分比)(D,Gy)以及计划靶体积(PTV)的剂量体积直方图来评估每个治疗计划的质量。近最大值(D)、平均值、V、V、V和V值用作评估肺部剂量的剂量指标。最大剂量用于评估脊髓剂量,最大和平均剂量用于评估食管、心脏、气管和肋骨的剂量。

结果

我们通过计算每个计划的CI、HI、R和D来定量评估体模治疗计划的质量。无靶区运动、0.5厘米靶区运动和1厘米靶区运动的PTV的CI值分别为1.07、1.08和1.06。无靶区运动、0.5厘米靶区运动和1厘米靶区运动的PTV的HI分别为1.20、1.10和1.20。无靶区运动、0.5厘米靶区运动和1厘米靶区运动的R分别为3.98、3.86和3.82,相应的D值分别为27.30、31.64和30.47。使用实际患者CT数据集的PTV的CI值分别为1.08、1.22、7.1和58.7。因此,我们的数据表明PTV内具有良好的剂量适形性和异质性,所有病例的剂量下降都很明显。在体模中进行的点剂量测量也与治疗计划数据显示出良好的一致性。

结论

我们的结果表明,利用我们机构目前的基础设施,采用三维适形放射治疗实施HFRT肺部SBRT是可行的。尽管所提出的治疗计划是有效的,但未来有必要对运动管理和图像引导技术进行研究,以优化治疗精度。这些发现表明,在类似环境中,HFRT可能是解决放射治疗资源限制的一个可行选择。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac60/12138432/5e688511ec67/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验