Sicorello M, Gianaros P J, Wright A G C, Bogdan P, Kraynak T E, Manuck S B, Schmahl C, Wager T D
Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany.
German Center for Mental Health (DZPG), Partner Site Mannheim-Heidelberg-Ulm.
bioRxiv. 2025 May 20:2025.05.15.653674. doi: 10.1101/2025.05.15.653674.
Understanding the neural basis of negative affective traits like neuroticism remains a critical challenge across psychology, neuroscience, and psychiatry. Here, we investigate which level of brain organization-regions, networks, or validated whole-brain machine-learning signatures-best explains negative affective traits in a community sample of 458 adults performing the two most widely used affective fMRI tasks, viewing emotional faces and scenes. Neuroticism could not be predicted from brain activity, with Bayesian evidence against all theory-guided neural measures. However, preregistered whole-brain models successfully decoded vulnerability to stress, a lower-level facet of neuroticism, with results replicating in a hold-out sample. The neural stress vulnerability pattern demonstrated good psychometric properties and indicated that negative affective traits are best represented by distributed whole-brain patterns related to domain-general stimulation rather than localized activity. Together with results from a comprehensive multiverse analysis across 14 traits and 1,176 models-available for exploration in an online app-the findings speak against simplistic neurobiological theories of negative affective traits, highlight a striking gap between predicting individual differences (<.35) and within-person emotional states (=.88), and underscore the importance of aligning psychological constructs with neural measures at the appropriate level of granularity.
理解诸如神经质等负面情感特质的神经基础,仍然是心理学、神经科学和精神病学领域的一项关键挑战。在此,我们研究大脑组织的哪个层面——区域、网络或经过验证的全脑机器学习特征——最能解释458名成年人社区样本中的负面情感特质,这些成年人执行了两项使用最广泛的情感功能磁共振成像任务,即观看情绪面孔和场景。无法根据大脑活动预测神经质,贝叶斯证据反对所有理论指导的神经测量方法。然而,预先注册的全脑模型成功解码了对压力的易感性,这是神经质的一个较低层次的方面,结果在一个保留样本中得到了重复。神经应激易感性模式显示出良好的心理测量特性,并表明负面情感特质最好由与领域通用刺激相关的分布式全脑模式而不是局部活动来表示。结合对14种特质和1176个模型进行的全面多宇宙分析结果(可在一个在线应用程序中进行探索),这些发现反驳了关于负面情感特质的简单神经生物学理论,突出了预测个体差异(<.35)和个体内情绪状态(=.88)之间的显著差距,并强调了在适当的粒度水平上使心理结构与神经测量方法保持一致的重要性。