Suppr超能文献

使用一个大型的、与靶点无关的酵母表面展示文库解码蛋白质-肽相互作用。

Decoding protein-peptide interactions using a large, target-agnostic yeast surface display library.

作者信息

Hurley Joseph D, Shlosman Irina, Lakshminarayan Megha, Zhao Ziyuan, Yue Hong, Nowak Radosław P, Fischer Eric S, Kruse Andrew C

机构信息

Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.

Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.

出版信息

bioRxiv. 2025 May 23:2025.05.19.654863. doi: 10.1101/2025.05.19.654863.

Abstract

Protein-peptide interactions underlie key biological processes and are commonly utilized in biomedical research and therapeutic discovery. It is often desirable to identify peptide sequence properties that confer high-affinity binding to a target protein. However, common approaches to such characterization are typically low throughput and only sample regions of sequence space near an initial hit. To overcome these challenges, we built a yeast surface displayed library representing ~6.1 × 10 unique peptides. We then performed screens against diverse protein targets, including two antibodies, an E3 ubiquitin ligase, and an essential membrane-bound bacterial enzyme. In each case, we observed motifs that appear to drive peptide binding and we identified multiple novel, high-affinity clones. These results highlight the library's utility as a robust and versatile tool for discovering peptide ligands and for characterizing protein-peptide binding interactions more generally. To enable further studies, we will make the library freely available upon request.

摘要

蛋白质 - 肽相互作用是关键生物学过程的基础,并且在生物医学研究和治疗发现中被广泛应用。通常希望识别赋予与靶蛋白高亲和力结合的肽序列特性。然而,此类表征的常用方法通常通量较低,并且仅对初始命中序列附近的序列空间区域进行采样。为了克服这些挑战,我们构建了一个酵母表面展示文库,该文库代表约6.1×10个独特的肽。然后,我们针对多种蛋白质靶标进行筛选,包括两种抗体、一种E3泛素连接酶和一种必需的膜结合细菌酶。在每种情况下,我们都观察到了似乎驱动肽结合的基序,并鉴定出多个新型高亲和力克隆。这些结果突出了该文库作为一种强大且通用的工具在发现肽配体以及更广泛地表征蛋白质 - 肽结合相互作用方面的效用。为了便于进一步研究,我们将根据要求免费提供该文库。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d2f/12139779/e96d916021ea/nihpp-2025.05.19.654863v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验