Pathak Spandan, O'Neill Kate M, Robinson Emily K, Hourwitz Matt J, Herr Corey, Fourkas John T, Giniger Edward, Losert Wolfgang
bioRxiv. 2025 Aug 7:2025.05.16.654525. doi: 10.1101/2025.05.16.654525.
The development of axons and dendrites (neurites) in a neural circuit relies on the dynamic interplay of cytoskeletal components, especially actin, and the integration of diverse environmental cues. Building on prior findings that actin dynamics can serve as a primary sensor of physical guidance cues, this work investigates the role of nanotopography in modulating and guiding actin waves and neurite-tip dynamics during early neural circuit development. Although actin dynamics is well known to contribute to pathfinding in wide axonal tips, typically referred to as growth cones, we also observe dynamic actin remodeling throughout neurites and at other, narrower, neurite tips. We find that actin-wave speeds do not change significantly in the first two weeks of neurite development on flat substrates, but decrease over the same period in neurites on nanoridges. The ability of nanoridges to guide actin waves and the neurite-tip direction also decreases as neurites mature, both for narrow tips and wide growth cones. This change in responsiveness to physical guidance cues with neuronal maturation may impact the regenerative capacity of developing neural cells that are inserted into mature brains.
神经回路中轴突和树突(神经突)的发育依赖于细胞骨架成分(尤其是肌动蛋白)的动态相互作用以及多种环境信号的整合。基于肌动蛋白动力学可作为物理引导信号的主要传感器这一先前发现,本研究探讨了纳米拓扑结构在早期神经回路发育过程中对肌动蛋白波和神经突尖端动力学的调节和引导作用。尽管众所周知肌动蛋白动力学有助于宽轴突尖端(通常称为生长锥)的路径寻找,但我们也观察到整个神经突以及其他更窄的神经突尖端存在动态肌动蛋白重塑。我们发现,在平坦底物上,神经突发育的前两周肌动蛋白波速度没有显著变化,但在纳米脊上的神经突中,同期肌动蛋白波速度下降。对于窄尖端和宽生长锥,随着神经突成熟,纳米脊引导肌动蛋白波和神经突尖端方向的能力也会下降。这种随着神经元成熟对物理引导信号反应性的变化可能会影响插入成熟大脑中的发育中神经细胞的再生能力。