Suppr超能文献

基于近红外光谱技术的青花菜(L. var.)色素定量分析模型的构建与优化

Construction and optimization of quantitative analysis models for pigments in broccoli ( L. var. ) based on near-infrared spectroscopy technology.

作者信息

Zhang Yijun, Wu Jianguo, Zhang Hao, Shen Zhiwei, Bai Xiaoyu, Gao Xu, Zhu Qiyun, Huang Yunshuai, Hong Seung-Beom, Zhu Zhujun, He Daogen, Zang Yunxiang

机构信息

Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs; Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China.

Daishan County Agriculture Village Bureau, Daishan 316200, Zhejiang, China.

出版信息

Food Chem X. 2025 May 10;28:102528. doi: 10.1016/j.fochx.2025.102528. eCollection 2025 May.

Abstract

Broccoli's pigments enhance its nutritional value by affecting color and antioxidant properties. Traditional methods like high-performance liquid chromatography (HPLC) and spectrophotometry are accurate but destructive, labor-intensive, and unsuitable for high-throughput screening. This study constructed non-destructive models based on near-infrared spectroscopy (NIRS) technology to predict pigment compounds in broccoli. The optimal models for total chlorophyll (Chl), Chl a, and Chl b were established with the use of SNV / 2nd derivative / PLS, which yielded an R of 0.992, RMSEC of 0.478 mg g DW, and RPD of 6.476. For carotenoids (CAR), the SNV / 1st derivative / PLS model provided the best results, with an R of 0.976, RMSEC of 0.098 mg g DW, and RPD of 4.455. However, the ACN model based on SNV / 1st derivative / PLS exhibited relative lower accuracy, with an R of 0.790, RMSEC of 1.777 units g DW, RPD of 1.267, suggesting the necessity for preliminary analysis. This study fills a critical gap in NIRS applications for plant pigment analysis, presenting a rapid, non-destructive, and high-throughput approach for quality assessment and breeding selection.

摘要

西兰花的色素通过影响颜色和抗氧化特性来提高其营养价值。高效液相色谱法(HPLC)和分光光度法等传统方法准确但具有破坏性、劳动强度大且不适合高通量筛选。本研究基于近红外光谱(NIRS)技术构建了非破坏性模型,以预测西兰花中的色素化合物。使用SNV / 二阶导数 / PLS建立了总叶绿素(Chl)、叶绿素a和叶绿素b的最佳模型,其R值为0.992,RMSEC为0.478 mg g DW,RPD为6.476。对于类胡萝卜素(CAR),SNV / 一阶导数 / PLS模型提供了最佳结果,R值为0.976,RMSEC为0.098 mg g DW,RPD为4.455。然而,基于SNV / 一阶导数 / PLS的ACN模型表现出相对较低的准确性,R值为0.790,RMSEC为1.777单位g DW,RPD为1.267,这表明有必要进行初步分析。本研究填补了NIRS在植物色素分析应用中的关键空白,为质量评估和育种选择提供了一种快速、无损且高通量的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d7a/12138926/0a0209862d4e/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验