文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

YOLO-ODD:一种用于洋葱叶部病害检测的改进型YOLOv8s模型。

YOLO-ODD: an improved YOLOv8s model for onion foliar disease detection.

作者信息

Raj Anusha, Dawale Mukund, Wayal Sagar, Khandagale Kiran, Bhangare Indira, Banerjee Susmita, Gajarushi Ashwini, Velmurugan Rajbabu, Baghini Maryam Shojaei, Gawande Suresh

机构信息

Indian Council of Agricultural Research (ICAR)-Directorate of Onion and Garlic Research, Pune, India.

TIH Foundation for Technology Innovation Hub, Internet of Things and Internet of Everything (IoT & IoE), Mumbai, India.

出版信息

Front Plant Sci. 2025 May 22;16:1551794. doi: 10.3389/fpls.2025.1551794. eCollection 2025.


DOI:10.3389/fpls.2025.1551794
PMID:40475906
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12137250/
Abstract

Onion crops are affected by many diseases at different stages of growth, resulting in significant yield loss. The early detection of diseases helps in the timely incorporation of management practices, thereby reducing yield losses. However, the manual identification of plant diseases requires considerable effort and is prone to mistakes. Thus, adopting cutting-edge technologies such as machine learning (ML) and deep learning (DL) can help overcome these difficulties by enabling the early detection of plant diseases. This study presents a cross layer integration of YOLOv8 architecture for detection of onion leaf diseases .anthracnose, Stemphylium blight, purple blotch (PB), and Twister disease. The experimental results demonstrate that customized YOLOv8 model YOLO-ODD integrated with CABM and DTAH attentions outperform YOLOv5 and YOLO v8 base models in most disease categories, particularly in detecting Anthracnose, Purple Blotch, and Twister disease. Proposed YOLOv8 model achieved the highest overall 77.30% accuracy, 81.50% precession and Recall of 72.10% and thus YOLOv8-based deep learning approach will detect and classify major onion foliar diseases while optimizing for accuracy, real-time application, and adaptability in diverse field conditions.

摘要

洋葱作物在生长的不同阶段会受到多种病害的影响,导致产量大幅损失。病害的早期检测有助于及时采取管理措施,从而减少产量损失。然而,人工识别植物病害需要耗费大量精力,且容易出错。因此,采用机器学习(ML)和深度学习(DL)等前沿技术,通过实现植物病害的早期检测,有助于克服这些困难。本研究提出了一种用于检测洋葱叶部病害(炭疽病、匍柄霉叶斑病、紫斑病(PB)和扭曲病)的YOLOv8架构的跨层集成方法。实验结果表明,与CABM和DTAH注意力机制集成的定制YOLOv8模型YOLO-ODD在大多数病害类别中优于YOLOv5和YOLO v8基础模型,特别是在检测炭疽病、紫斑病和扭曲病方面。所提出的YOLOv8模型总体准确率最高,达到77.30%,精确率为81.50%,召回率为72.10%,因此基于YOLOv8的深度学习方法将能够检测和分类主要的洋葱叶部病害,同时在不同田间条件下优化准确性、实时应用和适应性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e859/12137250/5974e1364720/fpls-16-1551794-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e859/12137250/e4332d3b0ac9/fpls-16-1551794-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e859/12137250/8eea90f83fa2/fpls-16-1551794-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e859/12137250/12e8b232d102/fpls-16-1551794-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e859/12137250/24169dea8393/fpls-16-1551794-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e859/12137250/9d150348b644/fpls-16-1551794-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e859/12137250/a7dd00f7babb/fpls-16-1551794-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e859/12137250/3705265ed026/fpls-16-1551794-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e859/12137250/1705a31d707f/fpls-16-1551794-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e859/12137250/7e9f0f82ada0/fpls-16-1551794-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e859/12137250/8ce58da25bc8/fpls-16-1551794-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e859/12137250/a752cfccc469/fpls-16-1551794-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e859/12137250/5974e1364720/fpls-16-1551794-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e859/12137250/e4332d3b0ac9/fpls-16-1551794-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e859/12137250/8eea90f83fa2/fpls-16-1551794-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e859/12137250/12e8b232d102/fpls-16-1551794-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e859/12137250/24169dea8393/fpls-16-1551794-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e859/12137250/9d150348b644/fpls-16-1551794-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e859/12137250/a7dd00f7babb/fpls-16-1551794-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e859/12137250/3705265ed026/fpls-16-1551794-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e859/12137250/1705a31d707f/fpls-16-1551794-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e859/12137250/7e9f0f82ada0/fpls-16-1551794-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e859/12137250/8ce58da25bc8/fpls-16-1551794-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e859/12137250/a752cfccc469/fpls-16-1551794-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e859/12137250/5974e1364720/fpls-16-1551794-g012.jpg

相似文献

[1]
YOLO-ODD: an improved YOLOv8s model for onion foliar disease detection.

Front Plant Sci. 2025-5-22

[2]
Advancing common bean (Phaseolus vulgaris L.) disease detection with YOLO driven deep learning to enhance agricultural AI.

Sci Rep. 2024-7-6

[3]
YOLOv8-RMDA: Lightweight YOLOv8 Network for Early Detection of Small Target Diseases in Tea.

Sensors (Basel). 2024-5-1

[4]
Automating container damage detection with the YOLO-NAS deep learning model.

Sci Prog. 2025

[5]
Detection Model of Tea Disease Severity under Low Light Intensity Based on YOLOv8 and EnlightenGAN.

Plants (Basel). 2024-5-15

[6]
Advancing precision agriculture with deep learning enhanced SIS-YOLOv8 for Solanaceae crop monitoring.

Front Plant Sci. 2025-1-9

[7]
Dataset of chilli and onion plant leaf images for classification and detection.

Data Brief. 2024-5-15

[8]
Advancing e-waste classification with customizable YOLO based deep learning models.

Sci Rep. 2025-5-25

[9]
Real time intelligent garbage monitoring and efficient collection using Yolov8 and Yolov5 deep learning models for environmental sustainability.

Sci Rep. 2025-5-8

[10]
AI-Powered Image-Based Assessment of Pressure Injuries Using You Only Look once (YOLO) Version 8 Models.

Adv Wound Care (New Rochelle). 2025-3-13

本文引用的文献

[1]
Optimization of Improved YOLOv8 for Precision Tomato Leaf Disease Detection in Sustainable Agriculture.

Sensors (Basel). 2025-2-25

[2]
Visualizing Plant Disease Distribution and Evaluating Model Performance for Deep Learning Classification with YOLOv8.

Pathogens. 2024-11-22

[3]
Enhanced YOLOv8 algorithm for leaf disease detection with lightweight GOCR-ELAN module and loss function: WSIoU.

Comput Biol Med. 2025-3

[4]
YOLO-ACT: an adaptive cross-layer integration method for apple leaf disease detection.

Front Plant Sci. 2024-10-1

[5]
Pyramid-YOLOv8: a detection algorithm for precise detection of rice leaf blast.

Plant Methods. 2024-9-28

[6]
Real-time object-removal tampering localization in surveillance videos by employing YOLO-V8.

J Forensic Sci. 2024-7

[7]
Vegetable disease detection using an improved YOLOv8 algorithm in the greenhouse plant environment.

Sci Rep. 2024-2-21

[8]
Identifying the Growth Status of Hydroponic Lettuce Based on YOLO-EfficientNet.

Plants (Basel). 2024-1-26

[9]
SE-VisionTransformer: Hybrid Network for Diagnosing Sugarcane Leaf Diseases Based on Attention Mechanism.

Sensors (Basel). 2023-10-17

[10]
Segmentation and Phenotype Calculation of Rapeseed Pods Based on YOLO v8 and Mask R-Convolution Neural Networks.

Plants (Basel). 2023-9-20

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索