文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用 YOLO 驱动的深度学习推进普通菜豆(Phaseolus vulgaris L.)病害检测,提升农业人工智能水平。

Advancing common bean (Phaseolus vulgaris L.) disease detection with YOLO driven deep learning to enhance agricultural AI.

机构信息

International Center for Tropical Agriculture, Km 17 Recta Cali-Palmira, Cali, Colombia.

Department of Horticulture, Agricultural College and Research Institute, Tamil Nadu Agriculture University, Vazhavachanur, Tiruvannamalai, Tamil Nadu, India.

出版信息

Sci Rep. 2024 Jul 6;14(1):15596. doi: 10.1038/s41598-024-66281-w.


DOI:10.1038/s41598-024-66281-w
PMID:38971939
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11227504/
Abstract

Common beans (CB), a vital source for high protein content, plays a crucial role in ensuring both nutrition and economic stability in diverse communities, particularly in Africa and Latin America. However, CB cultivation poses a significant threat to diseases that can drastically reduce yield and quality. Detecting these diseases solely based on visual symptoms is challenging, due to the variability across different pathogens and similar symptoms caused by distinct pathogens, further complicating the detection process. Traditional methods relying solely on farmers' ability to detect diseases is inadequate, and while engaging expert pathologists and advanced laboratories is necessary, it can also be resource intensive. To address this challenge, we present a AI-driven system for rapid and cost-effective CB disease detection, leveraging state-of-the-art deep learning and object detection technologies. We utilized an extensive image dataset collected from disease hotspots in Africa and Colombia, focusing on five major diseases: Angular Leaf Spot (ALS), Common Bacterial Blight (CBB), Common Bean Mosaic Virus (CBMV), Bean Rust, and Anthracnose, covering both leaf and pod samples in real-field settings. However, pod images are only available for Angular Leaf Spot disease. The study employed data augmentation techniques and annotation at both whole and micro levels for comprehensive analysis. To train the model, we utilized three advanced YOLO architectures: YOLOv7, YOLOv8, and YOLO-NAS. Particularly for whole leaf annotations, the YOLO-NAS model achieves the highest mAP value of up to 97.9% and a recall of 98.8%, indicating superior detection accuracy. In contrast, for whole pod disease detection, YOLOv7 and YOLOv8 outperformed YOLO-NAS, with mAP values exceeding 95% and 93% recall. However, micro annotation consistently yields lower performance than whole annotation across all disease classes and plant parts, as examined by all YOLO models, highlighting an unexpected discrepancy in detection accuracy. Furthermore, we successfully deployed YOLO-NAS annotation models into an Android app, validating their effectiveness on unseen data from disease hotspots with high classification accuracy (90%). This accomplishment showcases the integration of deep learning into our production pipeline, a process known as DLOps. This innovative approach significantly reduces diagnosis time, enabling farmers to take prompt management interventions. The potential benefits extend beyond rapid diagnosis serving as an early warning system to enhance common bean productivity and quality.

摘要

普通菜豆(CB)是一种高蛋白含量的重要来源,在确保不同社区的营养和经济稳定方面发挥着至关重要的作用,特别是在非洲和拉丁美洲。然而,CB 的种植对各种疾病构成了重大威胁,这些疾病会极大地降低产量和质量。仅基于视觉症状来检测这些疾病具有挑战性,因为不同病原体之间存在变异性,并且不同病原体引起的症状也相似,这使得检测过程更加复杂。仅依靠农民发现疾病的能力的传统方法是不够的,虽然需要聘请专家病理学家和先进的实验室,但这也可能是资源密集型的。为了解决这一挑战,我们提出了一种用于快速、经济高效的 CB 疾病检测的人工智能驱动系统,利用最先进的深度学习和目标检测技术。我们使用了一个从非洲和哥伦比亚疾病热点收集的广泛图像数据集,重点关注五种主要疾病:角斑病(ALS)、普通细菌性枯萎病(CBB)、普通菜豆花叶病毒(CBMV)、豆锈病和炭疽病,涵盖了真实环境中的叶片和豆荚样本。然而,只有角斑病的豆荚图像可用。该研究采用了数据增强技术和整体及微观水平的注释进行全面分析。为了训练模型,我们使用了三个先进的 YOLO 架构:YOLOv7、YOLOv8 和 YOLO-NAS。特别是对于整个叶片注释,YOLO-NAS 模型的 mAP 值高达 97.9%,召回率为 98.8%,表明具有较高的检测精度。相比之下,对于整个豆荚疾病检测,YOLOv7 和 YOLOv8 的表现优于 YOLO-NAS,其 mAP 值超过 95%,召回率为 93%。然而,在所有疾病类别和植物部位的检测中,微观注释的性能始终低于整体注释,这在所有的 YOLO 模型中都得到了验证,这突出了检测精度方面的意外差异。此外,我们成功地将 YOLO-NAS 注释模型部署到一个 Android 应用程序中,该应用程序在来自疾病热点的未见数据上实现了高分类准确性(90%),验证了其有效性。这一成就展示了将深度学习集成到我们的生产管道中的过程,这一过程被称为 DLOps。这种创新方法大大缩短了诊断时间,使农民能够及时采取管理干预措施。其潜在的好处不仅在于作为早期预警系统的快速诊断,以提高普通菜豆的产量和质量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2a8/11227504/f56f283a0efe/41598_2024_66281_Fig16_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2a8/11227504/6e3cd314c722/41598_2024_66281_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2a8/11227504/47ff3b3c0af3/41598_2024_66281_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2a8/11227504/250bbf983ea7/41598_2024_66281_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2a8/11227504/973d4b30bd5a/41598_2024_66281_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2a8/11227504/fc3040baee0c/41598_2024_66281_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2a8/11227504/fed319916176/41598_2024_66281_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2a8/11227504/4db29cdfc20b/41598_2024_66281_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2a8/11227504/f7b977f9d9cc/41598_2024_66281_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2a8/11227504/597d9d5e9bc1/41598_2024_66281_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2a8/11227504/5538ac5abc33/41598_2024_66281_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2a8/11227504/86308fd8d0ef/41598_2024_66281_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2a8/11227504/3f483fb11da7/41598_2024_66281_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2a8/11227504/aff2533a5d2e/41598_2024_66281_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2a8/11227504/6daddfde638f/41598_2024_66281_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2a8/11227504/18e3385439f5/41598_2024_66281_Fig15_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2a8/11227504/f56f283a0efe/41598_2024_66281_Fig16_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2a8/11227504/6e3cd314c722/41598_2024_66281_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2a8/11227504/47ff3b3c0af3/41598_2024_66281_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2a8/11227504/250bbf983ea7/41598_2024_66281_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2a8/11227504/973d4b30bd5a/41598_2024_66281_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2a8/11227504/fc3040baee0c/41598_2024_66281_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2a8/11227504/fed319916176/41598_2024_66281_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2a8/11227504/4db29cdfc20b/41598_2024_66281_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2a8/11227504/f7b977f9d9cc/41598_2024_66281_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2a8/11227504/597d9d5e9bc1/41598_2024_66281_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2a8/11227504/5538ac5abc33/41598_2024_66281_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2a8/11227504/86308fd8d0ef/41598_2024_66281_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2a8/11227504/3f483fb11da7/41598_2024_66281_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2a8/11227504/aff2533a5d2e/41598_2024_66281_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2a8/11227504/6daddfde638f/41598_2024_66281_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2a8/11227504/18e3385439f5/41598_2024_66281_Fig15_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2a8/11227504/f56f283a0efe/41598_2024_66281_Fig16_HTML.jpg

相似文献

[1]
Advancing common bean (Phaseolus vulgaris L.) disease detection with YOLO driven deep learning to enhance agricultural AI.

Sci Rep. 2024-7-6

[2]
Common beans imagery dataset for early detection of bean rust and bean anthracnose diseases.

Data Brief. 2024-5-11

[3]
Complete genome sequence of bean leaf crumple virus, a novel begomovirus infecting common bean in Colombia.

Arch Virol. 2017-6

[4]
Genome-Wide Association Studies of Anthracnose and Angular Leaf Spot Resistance in Common Bean (Phaseolus vulgaris L.).

PLoS One. 2016-3-1

[5]
An Innovative Deep Learning Approach to Spinal Fracture Detection in CT Images.

Ann Ital Chir. 2024

[6]
High-resolution mapping reveals linkage between genes in common bean cultivar Ouro Negro conferring resistance to the rust, anthracnose, and angular leaf spot diseases.

Theor Appl Genet. 2017-5-30

[7]
Fine-mapping of angular leaf spot resistance gene Phg-2 in common bean and development of molecular breeding tools.

Theor Appl Genet. 2019-4-11

[8]
Tea leaf disease detection and identification based on YOLOv7 (YOLO-T).

Sci Rep. 2023-4-13

[9]
YOLOv8-RMDA: Lightweight YOLOv8 Network for Early Detection of Small Target Diseases in Tea.

Sensors (Basel). 2024-5-1

[10]
Common bacterial blight of bean: a model of seed transmission and pathological convergence.

Mol Plant Pathol. 2021-12

引用本文的文献

[1]
A review of plant leaf disease identification by deep learning algorithms.

Front Plant Sci. 2025-8-20

[2]
Enhancing detection of common bean diseases using Fast Gradient Sign Method-trained Vision Transformers.

Front Artif Intell. 2025-8-6

[3]
Integration of crop modeling and sensing into molecular breeding for nutritional quality and stress tolerance.

Theor Appl Genet. 2025-8-8

[4]
Artificial Intelligence-Assisted Breeding for Plant Disease Resistance.

Int J Mol Sci. 2025-6-1

[5]
Digital framework for georeferenced multiplatform surveillance of banana wilt using human in the loop AI and YOLO foundation models.

Sci Rep. 2025-1-28

[6]
AI-powered detection and quantification of post-harvest physiological deterioration (PPD) in cassava using YOLO foundation models and K-means clustering.

Plant Methods. 2024-11-23

本文引用的文献

[1]
Plant disease detection model for edge computing devices.

Front Plant Sci. 2023-12-8

[2]
Tea leaf disease detection and identification based on YOLOv7 (YOLO-T).

Sci Rep. 2023-4-13

[3]
Recent Advancements and Challenges of AIoT Application in Smart Agriculture: A Review.

Sensors (Basel). 2023-4-5

[4]
Using Mobile Edge AI to Detect and Map Diseases in Citrus Orchards.

Sensors (Basel). 2023-2-14

[5]
Deep learning-based segmentation and classification of leaf images for detection of tomato plant disease.

Front Plant Sci. 2022-10-7

[6]
Artificial intelligence framework for modeling and predicting crop yield to enhance food security in Saudi Arabia.

PeerJ Comput Sci. 2022-9-30

[7]
Object detection using YOLO: challenges, architectural successors, datasets and applications.

Multimed Tools Appl. 2023

[8]
Deep learning-based approach for identification of diseases of maize crop.

Sci Rep. 2022-4-15

[9]
Iron and zinc bioavailability in common bean (Phaseolus vulgaris) is dependent on chemical composition and cooking method.

Food Chem. 2022-9-1

[10]
Detection and identification of tea leaf diseases based on AX-RetinaNet.

Sci Rep. 2022-2-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索