International Center for Tropical Agriculture, Km 17 Recta Cali-Palmira, Cali, Colombia.
Department of Horticulture, Agricultural College and Research Institute, Tamil Nadu Agriculture University, Vazhavachanur, Tiruvannamalai, Tamil Nadu, India.
Sci Rep. 2024 Jul 6;14(1):15596. doi: 10.1038/s41598-024-66281-w.
Common beans (CB), a vital source for high protein content, plays a crucial role in ensuring both nutrition and economic stability in diverse communities, particularly in Africa and Latin America. However, CB cultivation poses a significant threat to diseases that can drastically reduce yield and quality. Detecting these diseases solely based on visual symptoms is challenging, due to the variability across different pathogens and similar symptoms caused by distinct pathogens, further complicating the detection process. Traditional methods relying solely on farmers' ability to detect diseases is inadequate, and while engaging expert pathologists and advanced laboratories is necessary, it can also be resource intensive. To address this challenge, we present a AI-driven system for rapid and cost-effective CB disease detection, leveraging state-of-the-art deep learning and object detection technologies. We utilized an extensive image dataset collected from disease hotspots in Africa and Colombia, focusing on five major diseases: Angular Leaf Spot (ALS), Common Bacterial Blight (CBB), Common Bean Mosaic Virus (CBMV), Bean Rust, and Anthracnose, covering both leaf and pod samples in real-field settings. However, pod images are only available for Angular Leaf Spot disease. The study employed data augmentation techniques and annotation at both whole and micro levels for comprehensive analysis. To train the model, we utilized three advanced YOLO architectures: YOLOv7, YOLOv8, and YOLO-NAS. Particularly for whole leaf annotations, the YOLO-NAS model achieves the highest mAP value of up to 97.9% and a recall of 98.8%, indicating superior detection accuracy. In contrast, for whole pod disease detection, YOLOv7 and YOLOv8 outperformed YOLO-NAS, with mAP values exceeding 95% and 93% recall. However, micro annotation consistently yields lower performance than whole annotation across all disease classes and plant parts, as examined by all YOLO models, highlighting an unexpected discrepancy in detection accuracy. Furthermore, we successfully deployed YOLO-NAS annotation models into an Android app, validating their effectiveness on unseen data from disease hotspots with high classification accuracy (90%). This accomplishment showcases the integration of deep learning into our production pipeline, a process known as DLOps. This innovative approach significantly reduces diagnosis time, enabling farmers to take prompt management interventions. The potential benefits extend beyond rapid diagnosis serving as an early warning system to enhance common bean productivity and quality.
普通菜豆(CB)是一种高蛋白含量的重要来源,在确保不同社区的营养和经济稳定方面发挥着至关重要的作用,特别是在非洲和拉丁美洲。然而,CB 的种植对各种疾病构成了重大威胁,这些疾病会极大地降低产量和质量。仅基于视觉症状来检测这些疾病具有挑战性,因为不同病原体之间存在变异性,并且不同病原体引起的症状也相似,这使得检测过程更加复杂。仅依靠农民发现疾病的能力的传统方法是不够的,虽然需要聘请专家病理学家和先进的实验室,但这也可能是资源密集型的。为了解决这一挑战,我们提出了一种用于快速、经济高效的 CB 疾病检测的人工智能驱动系统,利用最先进的深度学习和目标检测技术。我们使用了一个从非洲和哥伦比亚疾病热点收集的广泛图像数据集,重点关注五种主要疾病:角斑病(ALS)、普通细菌性枯萎病(CBB)、普通菜豆花叶病毒(CBMV)、豆锈病和炭疽病,涵盖了真实环境中的叶片和豆荚样本。然而,只有角斑病的豆荚图像可用。该研究采用了数据增强技术和整体及微观水平的注释进行全面分析。为了训练模型,我们使用了三个先进的 YOLO 架构:YOLOv7、YOLOv8 和 YOLO-NAS。特别是对于整个叶片注释,YOLO-NAS 模型的 mAP 值高达 97.9%,召回率为 98.8%,表明具有较高的检测精度。相比之下,对于整个豆荚疾病检测,YOLOv7 和 YOLOv8 的表现优于 YOLO-NAS,其 mAP 值超过 95%,召回率为 93%。然而,在所有疾病类别和植物部位的检测中,微观注释的性能始终低于整体注释,这在所有的 YOLO 模型中都得到了验证,这突出了检测精度方面的意外差异。此外,我们成功地将 YOLO-NAS 注释模型部署到一个 Android 应用程序中,该应用程序在来自疾病热点的未见数据上实现了高分类准确性(90%),验证了其有效性。这一成就展示了将深度学习集成到我们的生产管道中的过程,这一过程被称为 DLOps。这种创新方法大大缩短了诊断时间,使农民能够及时采取管理干预措施。其潜在的好处不仅在于作为早期预警系统的快速诊断,以提高普通菜豆的产量和质量。
Sci Rep. 2023-4-13
Sensors (Basel). 2024-5-1
Mol Plant Pathol. 2021-12
Front Plant Sci. 2025-8-20
Front Artif Intell. 2025-8-6
Int J Mol Sci. 2025-6-1
Front Plant Sci. 2023-12-8
Sci Rep. 2023-4-13
Sensors (Basel). 2023-4-5
Sensors (Basel). 2023-2-14
Multimed Tools Appl. 2023