Suppr超能文献

基于轻量级GOCR-ELAN模块和WSIoU损失函数的用于叶片病害检测的增强YOLOv8算法

Enhanced YOLOv8 algorithm for leaf disease detection with lightweight GOCR-ELAN module and loss function: WSIoU.

作者信息

Wen Guihao, Li Ming, Tan Yunfei, Shi Chaoshan, Luo Yonghang, Luo Wenya

机构信息

Computer Science and Information Sciences, Chongqing Normal University, Shapingba, Chongqing, 401331, China.

出版信息

Comput Biol Med. 2025 Mar;186:109630. doi: 10.1016/j.compbiomed.2024.109630. Epub 2024 Dec 29.

Abstract

Leaf disease detection holds significant application value in the agricultural domain, as timely and accurate detection of crop leaf disease targets is crucial for improving crop yield and quality. To handle varying crop leaf disease target sizes, occlusion issues, and detection errors in complex environments, the YOLOv8 structure has been enhanced. Firstly, to tackle the issues of target diversity and loss of image features, this paper designs the GOCR-ELAN lightweight module to replace some of the C2f modules in the Backbone, thereby reducing the parameters in the model and enhancing the network's feature extraction capability. Secondly, replacing the CBS convolution in the network with the ADown downsampling module effectively addresses issues such as feature selection and preservation in occluded scenes, further reducing the algorithm's parameter count. Finally, to tackle missed detections and false alarms in complex environments, this paper introduces the WSIoU loss function optimization algorithm to enhance both convergence speed and localization accuracy. Averaged experimental results suggest that, relative to the original YOLOv8 algorithm, parameters have been reduced by 28.7 %, the GFLOPs metric has decreased by 43.2 %, MAP50 has increased from 86 % to 87.7 %, and MAP50-95 has risen from 67 % to 68.9 %, achieving both lightweight model construction and improved detection performance. The trained model is just 4.55 MB, smaller than the lightest YOLOv5 model, and remains highly competitive in detection accuracy compared to larger models.

摘要

叶片病害检测在农业领域具有重要的应用价值,因为及时、准确地检测作物叶片病害目标对于提高作物产量和质量至关重要。为了处理不同作物叶片病害目标大小、遮挡问题以及复杂环境中的检测误差,对YOLOv8结构进行了改进。首先,为了解决目标多样性和图像特征丢失的问题,本文设计了GOCR-ELAN轻量级模块来替换主干中的一些C2f模块,从而减少模型中的参数并增强网络的特征提取能力。其次,用ADown下采样模块替换网络中的CBS卷积,有效地解决了遮挡场景中的特征选择和保留等问题,进一步减少了算法的参数数量。最后,为了解决复杂环境中的漏检和误报问题,本文引入了WSIoU损失函数优化算法,以提高收敛速度和定位精度。平均实验结果表明,相对于原始的YOLOv8算法,参数减少了28.7%,GFLOPs指标下降了43.2%,MAP50从86%提高到87.7%,MAP50-95从67%提高到68.9%,实现了轻量级模型构建和检测性能的提升。训练后的模型仅4.55MB,比最轻的YOLOv5模型还小,并且在检测精度方面与更大的模型相比仍具有很强的竞争力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验