Tang Dongxue, Wang Yao, Jing Xu, Duan Chunying
College of Chemistry, Dalian University of Technology, 116024, P. R. China.
State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210093, China.
Dalton Trans. 2025 Jun 24;54(25):10030-10036. doi: 10.1039/d5dt00776c.
Photocatalytic ammonia synthesis represents a highly promising and environmentally sustainable strategy for nitrogen fixation. In this study, a novel type II heterojunction MOF-based composite BiOBr-Vo/MIL-101(Fe)-F was successfully constructed. The introduction of oxygen vacancies on BiOBr a thermal calcination strategy, and doping with F-modified MIL-101(Fe) using the solvothermal method, facilitated the adsorption and activation of nitrogen in the photocatalytic nitrogen fixation. The fluorine modification in MIL-101(Fe) can effectively promote the separation of charge carriers, thereby further enhancing the photocatalytic efficiency. Photocatalytic experiments reveal that the BiOBr-Vo/MIL-101(Fe)-F (10 wt% doping) composite achieves an optimal nitrogen fixation rate of 80.9 μmol g h under visible light (≥420 nm), which is 2.8 times higher than that of the hybridised materials without F modification and 21 times higher than that of pristine BiOBr. The type II heterojunction also effectively suppresses the recombination of photogenerated electron-hole (e-h) pairs, resulting in an efficient separation of the charge carriers and an enhanced photocatalytic activity for the reduction of nitrogen. Continuously stable catalytic activity over 8 cycles (lifetime ≥ 32 h) shows negligible activity loss, which is attributed to the robust coordination structure of BiOBr-Vo/MIL-101(Fe)-F. This finding carries significant implications for the development of novel nitrogen reduction photocatalysts that exhibit both high efficiency and stability.
光催化氨合成是一种极具前景且环境可持续的固氮策略。在本研究中,成功构建了一种新型的基于II型异质结的金属有机框架(MOF)复合材料BiOBr-Vo/MIL-101(Fe)-F。通过热煅烧策略在BiOBr上引入氧空位,并采用溶剂热法用F修饰的MIL-101(Fe)进行掺杂,促进了光催化固氮中氮的吸附和活化。MIL-101(Fe)中的氟修饰能有效促进电荷载流子的分离,从而进一步提高光催化效率。光催化实验表明,BiOBr-Vo/MIL-101(Fe)-F(10 wt%掺杂)复合材料在可见光(≥420 nm)下实现了80.9 μmol g⁻¹ h⁻¹的最佳固氮率,这比未进行F修饰的杂化材料高2.8倍,比原始BiOBr高21倍。II型异质结还有效抑制了光生电子-空穴(e-h)对的复合,导致电荷载流子的有效分离以及用于氮还原的光催化活性增强。在8个循环(寿命≥32 h)中持续稳定的催化活性显示活性损失可忽略不计,这归因于BiOBr-Vo/MIL-101(Fe)-F的稳健配位结构。这一发现对开发兼具高效性和稳定性的新型氮还原光催化剂具有重要意义。