Wolff Niklas, Schönweger Georg, Islam Md Redwanul, Ding Ziming, Kübel Christian, Fichtner Simon, Kienle Lorenz
Department of Material Science, Kiel University, Kaiserstr. 2, D-24143, Kiel, Germany.
Kiel Nano, Surface and Interface Science (KiNSIS), Kiel University, Christian-Albrechts-Platz 4, D-24118, Kiel, Germany.
Adv Sci (Weinh). 2025 Aug;12(30):e03827. doi: 10.1002/advs.202503827. Epub 2025 Jun 6.
The integration of ferroelectric nitride AlScN onto GaN templates can enable enhanced functionality in novel high-power transistors and memory devices. This requires a detailed understanding of ferroelectric domain structures and their impact on the electrical properties. In this contribution, the sputter epitaxy of highly coherent AlScN thin films grown on GaN approaching lattice-matching conditions is demonstrated. Scanning transmission electron microscopy (STEM) investigations reveal polar domains and the mechanism of domain propagation upon ferroelectric switching. Atomic resolution imaging suggests that polarization inversion commences by an interfacial switching process in which the monolayer next to the interface already changes its polarization from the as-grown M- to N-polarity. The atomic configurations of this planar polarization discontinuity are identified and systematic changes of the electronic structure are revealed by electron energy loss spectroscopy (EELS). Moreover, persistent domains with M-polarity are identified at the top Pt electrode interface after switching. These insights on the location and the atomic structure of ferroelectric domains in sputter deposited AlScN/GaN heterostructures are compared to metal organic chemical vapor deposition (MOCVD)-grown films and discussed with respect to their defect structure. This knowledge will support the development of future non-volatile memory devices and novel transistor structures based on ferroelectric nitride thin films via interface and defect engineering.
将铁电氮化物AlScN集成到GaN模板上,可以增强新型高功率晶体管和存储器件的功能。这需要详细了解铁电畴结构及其对电学性质的影响。在本论文中,展示了在接近晶格匹配条件的GaN上生长的高度相干AlScN薄膜的溅射外延。扫描透射电子显微镜(STEM)研究揭示了极性畴以及铁电开关过程中畴传播的机制。原子分辨率成像表明,极化反转通过界面开关过程开始,其中界面旁边的单层已经将其极化从生长时的M极性转变为N极性。确定了这种平面极化不连续性的原子构型,并通过电子能量损失谱(EELS)揭示了电子结构的系统变化。此外,在开关后在顶部Pt电极界面处识别出具有M极性的持久畴。将溅射沉积的AlScN/GaN异质结构中铁电畴的位置和原子结构的这些见解与金属有机化学气相沉积(MOCVD)生长的薄膜进行了比较,并就其缺陷结构进行了讨论。这些知识将通过界面和缺陷工程支持未来基于铁电氮化物薄膜的非易失性存储器件和新型晶体管结构的开发。