Suppr超能文献

用于神经形态计算的基于成分梯度氮化物铁电体的多级非易失性存储器。

Composition-Graded Nitride Ferroelectrics Based Multi-Level Non-Volatile Memory for Neuromorphic Computing.

作者信息

Wang Rui, Ye Haotian, Xu Xifan, Wang Jinlin, Feng Ran, Wang Tao, Sheng Bowen, Liu Fang, Shen Bo, Wang Ping, Wang Xinqiang

机构信息

State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871, China.

Electron Microscopy Laboratory, School of Physics, Peking University, Beijing, 100871, China.

出版信息

Adv Mater. 2025 Feb;37(5):e2414805. doi: 10.1002/adma.202414805. Epub 2024 Dec 8.

Abstract

Multi-level non-volatile ferroelectric memories are emerging as promising candidates for data storage and neuromorphic computing applications, due to the enhancement of storage density and the reduction of energy and space consumption. Traditional multi-level operations are achieved by utilizing intermediary polarization states, which exhibit an unpredictable ferroelectric domain switching nature, leading to unstable multi-level memory. In this study, a unique approach of composition-graded ferroelectric ScAlN to achieve tunable operating voltage in a wide range and attain precise control of domain switching and stable multi-level memory is proposed. This non-volatile memory supports multi-level storage up to 7-bit capacities, and exhibits enhanced performance compared to the uniform composition device, showing one order of magnitude higher ON/OFF ratio, 30% reduced working voltage, and up to 50% enhanced tuning window of operating voltage. Finally, the emulation of long-term plasticity and linear weight update akin to biological synapse with high uniformity and reliability are demonstrated. The proposed composition-grading architecture offers new opportunities for next-generation multi-level ferroelectric memories, paving the way for advanced hybrid integration in multifunctional computing systems.

摘要

多层非易失性铁电存储器正成为数据存储和神经形态计算应用的有前途的候选者,这得益于存储密度的提高以及能量和空间消耗的减少。传统的多级操作是通过利用中间极化状态来实现的,这些状态表现出不可预测的铁电畴开关特性,导致多级存储器不稳定。在本研究中,提出了一种独特的成分渐变铁电体ScAlN方法,以在宽范围内实现可调工作电压,并实现对畴开关的精确控制和稳定的多级存储器。这种非易失性存储器支持高达7位容量的多级存储,与均匀成分器件相比表现出增强的性能,开/关比高一个数量级,工作电压降低30%,工作电压的调谐窗口提高多达50%。最后,展示了类似于生物突触的具有高均匀性和可靠性的长期可塑性和线性权重更新的模拟。所提出的成分渐变架构为下一代多级铁电存储器提供了新的机会,为多功能计算系统中的先进混合集成铺平了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验