Institute of Engineering Innovation, School of Engineering, The University of Tokyo , Tokyo 113-8656, Japan.
Nanostructures Research Laboratory, Japan Fine Ceramic Center , Nagoya 456-8587, Japan.
Acc Chem Res. 2017 Jul 18;50(7):1502-1512. doi: 10.1021/acs.accounts.7b00123. Epub 2017 Jul 5.
The functional properties of materials and devices are critically determined by the electromagnetic field structures formed inside them, especially at nanointerface and surface regions, because such structures are strongly associated with the dynamics of electrons, holes and ions. To understand the fundamental origin of many exotic properties in modern materials and devices, it is essential to directly characterize local electromagnetic field structures at such defect regions, even down to atomic dimensions. In recent years, rapid progress in the development of high-speed area detectors for aberration-corrected scanning transmission electron microscopy (STEM) with sub-angstrom spatial resolution has opened new possibilities to directly image such electromagnetic field structures at very high-resolution. In this Account, we give an overview of our recent development of differential phase contrast (DPC) microscopy for aberration-corrected STEM and its application to many materials problems. In recent years, we have developed segmented-type STEM detectors which divide the detector plane into 16 segments and enable simultaneous imaging of 16 STEM images which are sensitive to the positions and angles of transmitted/scattered electrons on the detector plane. These detectors also have atomic-resolution imaging capability. Using these segmented-type STEM detectors, we show DPC STEM imaging to be a very powerful tool for directly imaging local electromagnetic field structures in materials and devices in real space. For example, DPC STEM can clearly visualize the local electric field variation due to the abrupt potential change across a p-n junction in a GaAs semiconductor, which cannot be observed by normal in-focus bright-field or annular type dark-field STEM imaging modes. DPC STEM is also very effective for imaging magnetic field structures in magnetic materials, such as magnetic domains and skyrmions. Moreover, real-time imaging of electromagnetic field structures can now be realized through very fast data acquisition, processing, and reconstruction algorithms. If we use DPC STEM for atomic-resolution imaging using a sub-angstrom size electron probe, it has been shown that we can directly observe the atomic electric field inside atoms within crystals and even inside single atoms, the field between the atomic nucleus and the surrounding electron cloud, which possesses information about the atomic species, local chemical bonding and charge redistribution between bonded atoms. This possibility may open an alternative way for directly visualizing atoms and nanostructures, that is, seeing atoms as an entity of electromagnetic fields that reflect the intra- and interatomic electronic structures. In this Account, the current status of aberration-corrected DPC STEM is highlighted, along with some applications in real material and device studies.
材料和器件的功能特性主要由其内部形成的电磁场结构决定,尤其是在纳米界面和表面区域,因为这些结构与电子、空穴和离子的动力学密切相关。为了理解现代材料和器件中许多奇异性质的基本起源,直接描述这些缺陷区域的局部电磁场结构至关重要,甚至可以达到原子尺度。近年来,具有亚埃空间分辨率的像差校正扫描透射电子显微镜(STEM)高速区域探测器的快速发展,为直接以高分辨率成像这些电磁场结构开辟了新的可能性。在本报告中,我们概述了我们最近在像差校正 STEM 中的差分相位对比(DPC)显微镜的发展及其在许多材料问题中的应用。近年来,我们开发了分段式 STEM 探测器,将探测器平面分为 16 个部分,可以同时对 16 个 STEM 图像进行成像,这些图像对探测器平面上透射/散射电子的位置和角度敏感。这些探测器还具有原子分辨率成像能力。使用这些分段式 STEM 探测器,我们展示了 DPC STEM 成像作为一种非常强大的工具,可直接在实空间中对材料和器件中的局部电磁场结构进行成像。例如,DPC STEM 可以清楚地可视化由于 GaAs 半导体中 p-n 结的电势突变而导致的局部电场变化,这是通过正常的聚焦明场或环形暗场 STEM 成像模式无法观察到的。DPC STEM 对于成像磁性材料中的磁场结构也非常有效,例如磁畴和斯格明子。此外,通过非常快速的数据采集、处理和重建算法,现在可以实现电磁场结构的实时成像。如果我们使用亚埃尺寸电子探针进行 DPC STEM 原子分辨率成像,已经表明我们可以直接观察晶体内部原子以及单个原子内部的原子电场,观察原子核和周围电子云之间的电场,该电场包含有关原子种类、局部化学结合和键合原子之间电荷再分布的信息。这种可能性可能为直接观察原子和纳米结构开辟一条替代途径,即将原子视为反映原子内和原子间电子结构的电磁场实体。本报告强调了像差校正 DPC STEM 的当前状态,以及在真实材料和器件研究中的一些应用。