Suppr超能文献

利用气象协变量监测新冠疫情发展的深度神经网络

Deep neural network for monitoring the growth of COVID-19 epidemic using meteorological covariates.

作者信息

Khan Atikur R, Chowdhury Abdul Hannan, Imon Rahmatullah

机构信息

Department of Management, North South University, Dhaka, Bangladesh.

Department of Mathematical Sciences, Ball State University, Muncie, USA.

出版信息

Intell Syst Appl. 2023 May;18:200234. doi: 10.1016/j.iswa.2023.200234. Epub 2023 May 13.

Abstract

Growth of an epidemic is influenced by the natural variation in climatic conditions and enforcement variation in government stringency policies. Though these variations do not prompt an instant change in the growth of an epidemic, effects of climatic conditions and stringency policies become apparent over time. Time-lagged relationships and functional dynamic connectivity among meteorological covariates and stringency levels generate many lagged features deemed to be important for prediction of reproduction rate, a measure for growth of an epidemic. This empirical study examines the importance scores of lagged features and implements distributed lag inspired feature selection with back testing for model selection and forecasting. A verification forecasting scheme is developed for continuous monitoring of the growth of an epidemic. We have demonstrated the monitoring process by computing a week ahead expected target of the reproduction rate and then by computing a one day ahead verification forecast to evaluate the progress towards the expected target. This evaluation procedure will aid the analysts with a decision making tool for any early adjustment of control options to suppress the transmission.

摘要

流行病的传播受到气候条件自然变化以及政府严格政策执行差异的影响。尽管这些变化不会立即促使流行病传播发生改变,但气候条件和严格政策的影响会随着时间推移而显现。气象协变量与严格程度之间的时间滞后关系和功能动态连通性产生了许多滞后特征,这些特征被认为对预测繁殖率(一种衡量流行病传播的指标)很重要。本实证研究考察了滞后特征的重要性得分,并实施了受分布式滞后启发的特征选择,并通过回测进行模型选择和预测。开发了一种验证预测方案,用于持续监测流行病的传播。我们通过计算繁殖率提前一周的预期目标,然后计算提前一天的验证预测来评估朝着预期目标的进展,展示了监测过程。这种评估程序将为分析师提供一种决策工具,以便对控制措施进行任何早期调整以抑制传播。

相似文献

1
Deep neural network for monitoring the growth of COVID-19 epidemic using meteorological covariates.
Intell Syst Appl. 2023 May;18:200234. doi: 10.1016/j.iswa.2023.200234. Epub 2023 May 13.
4
Use of meteorological parameters for forecasting scarlet fever morbidity in Tianjin, Northern China.
Environ Sci Pollut Res Int. 2021 Feb;28(6):7281-7294. doi: 10.1007/s11356-020-11072-9. Epub 2020 Oct 7.
6
Collaboration between meteorology and public health: Predicting the dengue epidemic in Guangzhou, China, by meteorological parameters.
Front Cell Infect Microbiol. 2022 Aug 9;12:881745. doi: 10.3389/fcimb.2022.881745. eCollection 2022.
7
Advanced forecasting of COVID-19 epidemic: Leveraging ensemble models, advanced optimization, and decomposition techniques.
Comput Biol Med. 2024 Jun;175:108442. doi: 10.1016/j.compbiomed.2024.108442. Epub 2024 Apr 16.
9
Cross-sectional Ct distributions from qPCR tests can provide an early warning signal for the spread of COVID-19 in communities.
Front Public Health. 2023 Sep 29;11:1185720. doi: 10.3389/fpubh.2023.1185720. eCollection 2023.
10
Forecasting air quality time series using deep learning.
J Air Waste Manag Assoc. 2018 Aug;68(8):866-886. doi: 10.1080/10962247.2018.1459956. Epub 2018 May 24.

本文引用的文献

4
Machine learning approaches in Covid-19 severity risk prediction in Morocco.
J Big Data. 2022;9(1):5. doi: 10.1186/s40537-021-00557-0. Epub 2022 Jan 6.
6
The forecast of COVID-19 spread risk at the county level.
J Big Data. 2021;8(1):99. doi: 10.1186/s40537-021-00491-1. Epub 2021 Jul 7.
7
Short-term forecasting of the COVID-19 outbreak in India.
Int Health. 2021 Sep 3;13(5):410-420. doi: 10.1093/inthealth/ihab031.
8
Prediction and analysis of Corona Virus Disease 2019.
PLoS One. 2020 Oct 5;15(10):e0239960. doi: 10.1371/journal.pone.0239960. eCollection 2020.
9
Similarity maps and pairwise predictions for transmission dynamics of COVID-19 with neural networks.
Inform Med Unlocked. 2020;20:100386. doi: 10.1016/j.imu.2020.100386. Epub 2020 Jul 15.
10
Deep learning methods for forecasting COVID-19 time-Series data: A Comparative study.
Chaos Solitons Fractals. 2020 Nov;140:110121. doi: 10.1016/j.chaos.2020.110121. Epub 2020 Jul 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验