School of Mathematics, Statistics, and Computer Science, University of KwaZulu-Natal, King Edward Avenue, Pietermaritzburg Campus, Pietermaritzburg, 3201, KwaZulu-Natal, South Africa.
Sci Rep. 2022 Sep 2;12(1):14945. doi: 10.1038/s41598-022-18993-0.
The dwarf mongoose optimization (DMO) algorithm developed in 2022 was applied to solve continuous mechanical engineering design problems with a considerable balance of the exploration and exploitation phases as a metaheuristic approach. Still, the DMO is restricted in its exploitation phase, somewhat hindering the algorithm's optimal performance. In this paper, we proposed a new hybrid method called the BDMSAO, which combines the binary variants of the DMO (or BDMO) and simulated annealing (SA) algorithm. In the modelling and implementation of the hybrid BDMSAO algorithm, the BDMO is employed and used as the global search method and the simulated annealing (SA) as the local search component to enhance the limited exploitative mechanism of the BDMO. The new hybrid algorithm was evaluated using eighteen (18) UCI machine learning datasets of low and medium dimensions. The BDMSAO was also tested using three high-dimensional medical datasets to assess its robustness. The results showed the efficacy of the BDMSAO in solving challenging feature selection problems on varying datasets dimensions and its outperformance over ten other methods in the study. Specifically, the BDMSAO achieved an overall result of 61.11% in producing the highest classification accuracy possible and getting 100% accuracy on 9 of 18 datasets. It also yielded the maximum accuracy obtainable on the three high-dimensional datasets utilized while achieving competitive performance regarding the number of features selected.
2022 年开发的矮袋鼠优化(DMO)算法被应用于解决连续机械工程设计问题,作为一种元启发式方法,它在探索和开发阶段具有相当的平衡。然而,DMO 在其开发阶段受到限制,这在一定程度上阻碍了算法的最佳性能。在本文中,我们提出了一种新的混合方法,称为 BDMSAO,它结合了 DMO(或 BDMO)的二进制变体和模拟退火(SA)算法。在混合 BDMSAO 算法的建模和实现中,使用了 DMO 并将其用作全局搜索方法,而模拟退火(SA)则作为局部搜索组件,以增强 DMO 有限的开发机制。该新混合算法使用了十八个(18)低维和中维 UCI 机器学习数据集进行评估。BDMSAO 还使用三个高维医疗数据集进行了测试,以评估其稳健性。结果表明,BDMSAO 在解决不同数据集维度的具有挑战性的特征选择问题方面是有效的,并且在研究中优于其他十种方法。具体来说,BDMSAO 在产生最高分类准确率方面的总体结果为 61.11%,在 18 个数据集中有 9 个达到了 100%的准确率。它还在三个使用的高维数据集上产生了最大的可获得精度,同时在所选特征的数量方面表现出了竞争力。