Chang Kai-Lan, Cooper Owen R, Gaudel Audrey, Allaart Marc, Ancellet Gerard, Clark Hannah, Godin-Beekmann Sophie, Leblanc Thierry, Van Malderen Roeland, Nédélec Philippe, Petropavlovskikh Irina, Steinbrecht Wolfgang, Stübi René, Tarasick David W, Torres Carlos
Cooperative Institute for Research in Environmental Sciences University of Colorado Boulder CO USA.
NOAA Chemical Sciences Laboratory Boulder CO USA.
AGU Adv. 2022 Apr;3(2):e2021AV000542. doi: 10.1029/2021AV000542. Epub 2022 Mar 4.
This study quantifies the association between the COVID-19 economic downturn and 2020 tropospheric ozone anomalies above Europe and western North America, and their impact on long-term trends. Anomaly detection for an atmospheric time series is usually carried out by identifying potentially aberrant data points relative to climatological values. However, detecting ozone anomalies from sparsely sampled ozonesonde profiles (once per week at most sites) is challenging due to ozone's high temporal variability. We first demonstrate the challenges for summarizing regional trends based on independent time series from multiple nearby ozone profiling stations. We then propose a novel regional-scale anomaly detection framework based on generalized additive mixed models, which accounts for the sampling frequency and inherent data uncertainty associated with each vertical profile data set, measured by ozonesondes, lidar or commercial aircraft. This method produces a long-term monthly time series with high vertical resolution that reports ozone anomalies from the surface to the middle-stratosphere under a unified framework, which can be used to quantify the regional-scale ozone anomalies during the COVID-19 economic downturn. By incorporating extensive commercial aircraft data and frequently sampled ozonesonde profiles above Europe, we show that the complex interannual variability of ozone can be adequately captured by our modeling approach. The results show that free tropospheric ozone negative anomalies in 2020 are the most profound since the benchmark year of 1994 for both Europe and western North America, and positive trends over 1994-2019 are diminished in both regions by the 2020 anomalies.
本研究量化了2019冠状病毒病(COVID-19)经济衰退与欧洲及北美西部上空2020年对流层臭氧异常之间的关联,以及它们对长期趋势的影响。大气时间序列的异常检测通常是通过识别相对于气候学值的潜在异常数据点来进行的。然而,由于臭氧的高时间变异性,从稀疏采样的臭氧探空仪剖面(大多数站点每周最多一次)中检测臭氧异常具有挑战性。我们首先展示了基于多个附近臭氧探测站的独立时间序列总结区域趋势所面临的挑战。然后,我们提出了一种基于广义相加混合模型的新型区域尺度异常检测框架,该框架考虑了与每个垂直剖面数据集相关的采样频率和固有数据不确定性,这些数据集由臭氧探空仪、激光雷达或商用飞机测量。该方法产生了一个具有高垂直分辨率的长期月度时间序列,在统一框架下报告从地表到平流层中部的臭氧异常,可用于量化COVID-19经济衰退期间的区域尺度臭氧异常。通过纳入欧洲上空广泛的商用飞机数据和频繁采样的臭氧探空仪剖面,我们表明我们的建模方法能够充分捕捉臭氧复杂的年际变异性。结果表明,2020年自由对流层臭氧负异常是欧洲和北美西部自1994年基准年以来最显著的,并且2020年的异常使这两个地区在1994 - 2019年期间的正趋势减弱。