Suppr超能文献

利用具有正权重和负权重的相位协同作用将重力纳入上肢运动的协同控制。

Incorporating gravity into synergistic control of upper limb movements using phasic synergies with positive and negative weights.

作者信息

Scano Alessandro, Brambilla Cristina, Russo Marta, d'Avella Andrea

机构信息

Institute of Intelligent Industrial Systems and Technologies for Advanced Manufacturing (STIIMA), Advanced Methods for Biomedical Signal and Image Processing Laboratory, Italian Council of National Research (CNR), Milan, Italy.

Institute of Cognitive Sciences and Technologies, Italian Council of National Research (CNR), Rome, Italy.

出版信息

J Appl Physiol (1985). 2025 Jul 1;139(1):112-126. doi: 10.1152/japplphysiol.00779.2024. Epub 2025 Jun 6.

Abstract

Two models have been proposed to describe how motor control is affected by gravity. According to the gravity-compensation model, accelerating and decelerating the limb through phasic muscle activations is independent of the control of gravity forces, with tonic muscle activations counteracting gravity force. The effort-optimization model, instead, hypothesizes that muscles exploit gravity, decreasing tonic activity to minimize effort using negative phasic EMG components. Muscle synergies have been used for assessing motor control in neurophysiological studies, but synergistic models so far have neglected explicit representations of gravity forces. Therefore, we aimed at incorporating the pervasive presence of gravity into muscle synergies by extracting synergies with negative weights to capture negative phasic EMG components. Muscle synergies with positive and negative weights were extracted using the mixed-matrix factorization (MMF) algorithm on a set of upper limb reaching movements performed by 15 healthy participants across targets in different planes designed to elicit positive and negative phasic activations. Movements were grouped depending on the tonic components at movement onset, needed for gravity exploitation, and identified as "increasing tonic EMG" (ITE) and "decreasing tonic EMG" (DTE). ITE showed better reconstruction accuracy than DTE when extracting five or fewer synergies. DTE exhibited more negative phasic activations and synergy weights showed more negative values. A bootstrap procedure showed that synergies extracted from ITE and DTE are different in structure, and cluster analysis found nine clusters for ITE and ten for DTE. These results indicate that compensation and effort minimization models can coexist within the muscle synergy framework. For the first time, a novel approach based on muscle synergies with positive and negative weights allows to account for the exploitation of gravity into synergistic models. This is achieved by a synergistic controller that incorporates both simplicity, as a reduced set of synergies underlying movement and static gravity compensation (phasic and tonic synergies), and effort optimization, based on the exploitation of gravity through negative phasic components.

摘要

已经提出了两种模型来描述重力如何影响运动控制。根据重力补偿模型,通过阶段性肌肉激活来加速和减速肢体与重力控制无关,而持续性肌肉激活则抵消重力。相反,努力优化模型假设肌肉利用重力,通过负向阶段性肌电图成分减少持续性活动以最小化努力。肌肉协同作用已被用于神经生理学研究中评估运动控制,但迄今为止协同模型忽略了重力的明确表示。因此,我们旨在通过提取具有负权重的协同作用以捕获负向阶段性肌电图成分,将重力的普遍存在纳入肌肉协同作用中。使用混合矩阵分解(MMF)算法,在15名健康参与者针对不同平面中的目标进行的一组上肢伸展运动中提取具有正权重和负权重的肌肉协同作用,这些运动旨在引发正向和负向阶段性激活。根据运动开始时重力利用所需的持续性成分对运动进行分组,并将其识别为“增加持续性肌电图”(ITE)和“减少持续性肌电图”(DTE)。在提取五个或更少的协同作用时,ITE显示出比DTE更好的重建精度。DTE表现出更多的负向阶段性激活,并且协同作用权重显示出更多的负值。一个自助程序表明,从ITE和DTE中提取的协同作用在结构上是不同的,聚类分析发现ITE有九个聚类,DTE有十个聚类。这些结果表明,补偿模型和努力最小化模型可以在肌肉协同作用框架内共存。首次,一种基于具有正权重和负权重的肌肉协同作用的新方法允许将重力的利用纳入协同模型中。这是通过一个协同控制器实现的,该控制器既包含简单性,即作为运动和静态重力补偿(阶段性和持续性协同作用)基础的一组简化的协同作用,又包含基于通过负向阶段性成分利用重力的努力优化。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验