Suppr超能文献

TimEHR:用于电子健康记录的基于图像的时间序列生成

TimEHR: Image-based Time Series Generation for Electronic Health Records.

作者信息

Karami Hojjat, Hartley Mary-Anne, Atienza David, Ionescu Anisoara

出版信息

IEEE J Biomed Health Inform. 2025 Jun 6;PP. doi: 10.1109/JBHI.2025.3577328.

Abstract

Time series in Electronic Health Records (EHRs) present unique challenges for generative models, such as irregular sampling, missing values, and high dimensionality. In this paper, we propose a novel generative adversarial network (GAN) model, TimEHR, to generate time series data from EHRs. In particular, TimEHR treats time series as images by using 2D convolutional kernels and is based on two conditional GANs. The first GAN generates missingness patterns, and the second GAN generates time series values based on the missingness pattern. Experimental results on three real-world EHR datasets show that TimEHR outperforms state-of-the-art methods in terms of fidelity, utility, and privacy metrics.

摘要

电子健康记录(EHR)中的时间序列给生成模型带来了独特的挑战,例如不规则采样、缺失值和高维度。在本文中,我们提出了一种新颖的生成对抗网络(GAN)模型TimEHR,用于从EHR中生成时间序列数据。具体而言,TimEHR通过使用二维卷积核将时间序列视为图像,并且基于两个条件GAN。第一个GAN生成缺失模式,第二个GAN基于缺失模式生成时间序列值。在三个真实世界的EHR数据集上的实验结果表明,TimEHR在保真度、效用和隐私指标方面优于现有方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验