强化会产生没有异质性的系统性差异。

Reinforcement generates systematic differences without heterogeneity.

作者信息

Gelastopoulos Alexandros, Sage Lucas, van de Rijt Arnout

机构信息

Department of Business and Management, University of Southern Denmark, Odense 05230, Denmark.

Department of Economics and Business, Pompeu Fabra University, Barcelona 08002, Spain.

出版信息

Proc Natl Acad Sci U S A. 2025 Jun 10;122(23):e2408163122. doi: 10.1073/pnas.2408163122. Epub 2025 Jun 6.

Abstract

Inequality in outcomes may emerge through a reinforcement process in which stochastic variation in values is determined by prior values but may also originate in preexisting differences in unobserved factors. A common approach toward differentiating between these origins in longitudinal data is to attribute systematic differences between units-differences in means or differences proportional to a time-varying group average-to unobserved heterogeneity. We show that any longitudinal data with systematic differences can also be produced by a reinforcement-driven data generating process. This result reconciles findings in three distinct research areas-science of science, personal culture, and sexual networks-where reinforcement is a strong theoretical prior, yet longitudinal data analyses advance an explanation of interpersonal differences based on heterogeneity. Future studies may bound the role of heterogeneity and reinforcement from below by measuring fixed traits that systematically vary with the outcome and isolating random events that trigger emergent differences.

摘要

结果的不平等可能通过一种强化过程出现,在这种过程中,数值的随机变化由先前的值决定,但也可能源于未观察到的因素中预先存在的差异。在纵向数据中区分这些起源的一种常见方法是将单位之间的系统差异——均值差异或与随时间变化的组平均值成比例的差异——归因于未观察到的异质性。我们表明,任何具有系统差异的纵向数据也可以由强化驱动的数据生成过程产生。这一结果调和了三个不同研究领域——科学学、个人文化和性网络——中的发现,在这些领域中,强化是一个强有力的理论前提,但纵向数据分析基于异质性推进了对人际差异的解释。未来的研究可能通过测量与结果系统变化的固定特征并分离触发新出现差异的随机事件,从下限界定异质性和强化的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e050/12167982/a349b20318b4/pnas.2408163122fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索