Suppr超能文献

基于深度学习的焊缝缺陷分类,采用VGG16迁移学习自适应微调。

Deep learning-based weld defect classification using VGG16 transfer learning adaptive fine-tuning.

作者信息

Kumaresan Samuel, Aultrin K S Jai, Kumar S S, Anand M Dev

机构信息

Department of Aerospace Engineering, Noorul Islam Centre for Higher Education, Kumaracoil, Kanyakumari District, Tamil Nadu 629180 India.

Department of Marine Engineering, Noorul Islam Centre for Higher Education, Kumaracoil, Kanyakumari District, Tamil Nadu 629180 India.

出版信息

Int J Interact Des Manuf. 2023 May 8:1-12. doi: 10.1007/s12008-023-01327-3.

Abstract

Welding is a vital joining process; however, occurrences of weld defects often degrade the quality of the welded part. The risk of occurrence of a variety of defects has led to the development of advanced weld defects detection systems such as automated weld defects detection and classification. The present work is a novel approach that proposes and investigates a unique image-centered method based on a deep learning model trained by a small X-ray image dataset. A data augmentation method able to process images on the go was used to offset the limitation of the small X-ray dataset. Fine-tuned transfer learning techniques were used to train two convolutional neural network based architectures with VGG16 and ResNet50 as the base models for the augmented sets. Out of the networks we fine-tuned, VGG16 based model performed well with a relatively higher average accuracy of 90%. Even though the small dataset was spread across 15 different classes in an unbalanced way, the learning curves showed acceptable model generalization characteristics.

摘要

焊接是一种至关重要的连接工艺;然而,焊接缺陷的出现常常会降低焊接部件的质量。各种缺陷出现的风险促使了先进的焊接缺陷检测系统的发展,如自动焊接缺陷检测与分类。当前的工作是一种新颖的方法,它提出并研究了一种基于由小尺寸X射线图像数据集训练的深度学习模型的独特的以图像为中心的方法。一种能够即时处理图像的数据增强方法被用来弥补小尺寸X射线数据集的局限性。微调迁移学习技术被用于训练两种基于卷积神经网络的架构,以VGG16和ResNet50作为增强数据集的基础模型。在我们微调的网络中,基于VGG16的模型表现良好,平均准确率相对较高,达到了90%。尽管小数据集以不平衡的方式分布在15个不同的类别中,但学习曲线显示出可接受的模型泛化特性。

相似文献

本文引用的文献

1
Advances in natural language processing.自然语言处理的进展。
Science. 2015 Jul 17;349(6245):261-6. doi: 10.1126/science.aaa8685.
2
Deep learning.深度学习。
Nature. 2015 May 28;521(7553):436-44. doi: 10.1038/nature14539.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验