Kang Weijie, Zhang Xianyang, Zhang Jiarui, Chen Xudan, Huang Honglan, He Bing, Qin Weiwei, Zhu Haizhen
Rocket Force University of Engineering, Xi'an, 710025, China.
Northwest Institute of Nuclear Technology, Xi'an, 710025, China.
Sci Rep. 2025 Jun 6;15(1):20026. doi: 10.1038/s41598-025-04985-3.
For the health management of complex systems, the high value of such systems often necessitates multimodal monitoring data, including video surveillance, internal sensors, empirical formulas, and even digital twins. Therefore, it is essential to design an effective intelligent fusion method for multimodal data. Firstly, a global monotonicity calculation method and a time series data augmentation technique are developed to address the inconsistencies arising from varying temporal lengths across different modalities. Secondly, in response to the need for efficient time series fusion, we propose a fast sequential learning network architecture along with a time series generative data structure. Finally, we introduce a many-to-many transfer training approach that culminates in the formation of a Multi-source Generative Adversarial Network (Ms-GAN). Numerical experiments and monitoring datasets are employed to validate the effectiveness of this multimodal generative fusion method. Notably, Ms-GAN enhances traditional GANs-typically limited to learning single data distributions-by enabling multimodal data fusion capabilities. This advancement holds significant promise for applications in various fields such as multimedia processing and medical diagnosis.
对于复杂系统的健康管理,此类系统的高价值往往需要多模态监测数据,包括视频监控、内部传感器、经验公式,甚至数字孪生。因此,设计一种有效的多模态数据智能融合方法至关重要。首先,开发了一种全局单调性计算方法和一种时间序列数据增强技术,以解决不同模态间时间长度变化所产生的不一致性。其次,为满足高效时间序列融合的需求,我们提出了一种快速序列学习网络架构以及一种时间序列生成数据结构。最后,我们引入了一种多对多转移训练方法,最终形成了一个多源生成对抗网络(Ms-GAN)。通过数值实验和监测数据集来验证这种多模态生成融合方法的有效性。值得注意的是,Ms-GAN通过实现多模态数据融合能力,增强了传统GAN(通常限于学习单一数据分布)。这一进展在多媒体处理和医学诊断等各个领域的应用中具有重大前景。