文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

面向工业资产的数字孪生驱动的预测与健康管理。

Digital twin-driven prognostics and health management for industrial assets.

作者信息

Xiao Bin, Zhong Jingshu, Bao Xiangyu, Chen Liang, Bao Jinsong, Zheng Yu

机构信息

School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.

College of Mechanical Engineering, Donghua University, Shanghai, 200240, China.

出版信息

Sci Rep. 2024 Jun 11;14(1):13443. doi: 10.1038/s41598-024-63990-0.


DOI:10.1038/s41598-024-63990-0
PMID:38862621
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11166927/
Abstract

As a facilitator of smart upgrading, digital twin (DT) is emerging as a driving force in prognostics and health management (PHM). Faults can lead to degradation or malfunction of industrial assets. Accordingly, DT-driven PHM studies are conducted to improve reliability and reduce maintenance costs of industrial assets. However, there is a lack of systematic research to analyze and summarize current DT-driven PHM applications and methodologies for industrial assets. Therefore, this paper first analyzes the application of DT in PHM from the application field, aspect, and hierarchy at application layer. The paper next deepens into the core and mechanism of DT in PHM at theory layer. Then enabling technologies and tools for DT modeling and DT system are investigated and summarized at implementation layer. Finally, observations and future research suggestions are presented.

摘要

作为智能升级的推动者,数字孪生(DT)正在成为预测与健康管理(PHM)领域的一股驱动力。故障可能导致工业资产的性能下降或出现故障。因此,开展了基于数字孪生驱动的预测与健康管理研究,以提高工业资产的可靠性并降低维护成本。然而,目前缺乏对现有基于数字孪生驱动的工业资产预测与健康管理应用及方法进行分析和总结的系统性研究。因此,本文首先从应用层的应用领域、方面和层次分析了数字孪生在预测与健康管理中的应用。接着在理论层深入探讨了数字孪生在预测与健康管理中的核心及机制。然后在实施层研究并总结了数字孪生建模和数字孪生系统的使能技术与工具。最后给出了相关见解和未来研究建议。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7c5/11166927/822ae3174838/41598_2024_63990_Fig15_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7c5/11166927/d07ec6ef6ea6/41598_2024_63990_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7c5/11166927/27f338bdf313/41598_2024_63990_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7c5/11166927/ec0ed3cf3f99/41598_2024_63990_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7c5/11166927/e8e20b81d7a6/41598_2024_63990_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7c5/11166927/2436b6b323d6/41598_2024_63990_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7c5/11166927/c35643e7457a/41598_2024_63990_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7c5/11166927/a996577c90bf/41598_2024_63990_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7c5/11166927/512b2d3da512/41598_2024_63990_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7c5/11166927/76a10aed535c/41598_2024_63990_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7c5/11166927/ceda6d85b580/41598_2024_63990_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7c5/11166927/fdf736117888/41598_2024_63990_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7c5/11166927/930a784b3f47/41598_2024_63990_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7c5/11166927/91359cbd6ff3/41598_2024_63990_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7c5/11166927/0355ef08e1ae/41598_2024_63990_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7c5/11166927/822ae3174838/41598_2024_63990_Fig15_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7c5/11166927/d07ec6ef6ea6/41598_2024_63990_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7c5/11166927/27f338bdf313/41598_2024_63990_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7c5/11166927/ec0ed3cf3f99/41598_2024_63990_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7c5/11166927/e8e20b81d7a6/41598_2024_63990_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7c5/11166927/2436b6b323d6/41598_2024_63990_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7c5/11166927/c35643e7457a/41598_2024_63990_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7c5/11166927/a996577c90bf/41598_2024_63990_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7c5/11166927/512b2d3da512/41598_2024_63990_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7c5/11166927/76a10aed535c/41598_2024_63990_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7c5/11166927/ceda6d85b580/41598_2024_63990_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7c5/11166927/fdf736117888/41598_2024_63990_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7c5/11166927/930a784b3f47/41598_2024_63990_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7c5/11166927/91359cbd6ff3/41598_2024_63990_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7c5/11166927/0355ef08e1ae/41598_2024_63990_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7c5/11166927/822ae3174838/41598_2024_63990_Fig15_HTML.jpg

相似文献

[1]
Digital twin-driven prognostics and health management for industrial assets.

Sci Rep. 2024-6-11

[2]
Prognostics and Health Management of Industrial Assets: Current Progress and Road Ahead.

Front Artif Intell. 2020-11-9

[3]
A review of diagnostic and prognostic capabilities and best practices for manufacturing.

J Intell Manuf. 2019-1

[4]
Overview of Explainable Artificial Intelligence for Prognostic and Health Management of Industrial Assets Based on Preferred Reporting Items for Systematic Reviews and Meta-Analyses.

Sensors (Basel). 2021-12-1

[5]
Systematic review of predictive maintenance and digital twin technologies challenges, opportunities, and best practices.

PeerJ Comput Sci. 2024-4-22

[6]
Hierarchical Modeling of a Manufacturing Work Cell to Promote Contextualized PHM Information Across Multiple Levels.

Manuf Lett. 2018-1

[7]
Smart Prognostics and Health Management (SPHM) in Smart Manufacturing: An Interoperable Framework.

Sensors (Basel). 2021-9-7

[8]
Deep Scattering Spectrum Germaneness for Fault Detection and Diagnosis for Component-Level Prognostics and Health Management (PHM).

Sensors (Basel). 2022-11-22

[9]
Rotate Vector (RV) Reducer Fault Detection and Diagnosis System: Towards Component Level Prognostics and Health Management (PHM).

Sensors (Basel). 2020-11-30

[10]
Sensor systems for prognostics and health management.

Sensors (Basel). 2010-6-8

引用本文的文献

[1]
Multimodal data generative fusion method for complex system health condition estimation.

Sci Rep. 2025-6-6

[2]
Research and Prospects of Digital Twin-Based Fault Diagnosis of Electric Machines.

Sensors (Basel). 2025-4-21

[3]
Intelligent fault diagnosis and operation condition monitoring of transformer based on multi-source data fusion and mining.

Sci Rep. 2025-3-4

本文引用的文献

[1]
Online Monitoring of Sensor Calibration Status to Support Condition-Based Maintenance.

Sensors (Basel). 2023-2-21

[2]
Digital Twins in Unmanned Aerial Vehicles for Rapid Medical Resource Delivery in Epidemics.

IEEE trans Intell Transp Syst. 2021-9-29

[3]
A Novel Fault Diagnosis Method for Denoising Autoencoder Assisted by Digital Twin.

Comput Intell Neurosci. 2022-7-21

[4]
A digital twin auxiliary approach based on adaptive sparse attention network for diesel engine fault diagnosis.

Sci Rep. 2022-1-13

[5]
Intelligent fault diagnosis of machines with small & imbalanced data: A state-of-the-art review and possible extensions.

ISA Trans. 2022-1

[6]
The 'Digital Twin' to enable the vision of precision cardiology.

Eur Heart J. 2020-12-21

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索