Karim Shahid, Liu Xin, Khan Abdullah Ayub, Laghari Asif Ali, Qadir Akeel, Bibi Irfana
School of Information Engineering, Xi'an Eurasia University, Xi'an, 710065, Shaanxi, China.
Faculty of Science and Technology, ILMA University, Karachi, Pakistan.
Sci Rep. 2024 Nov 26;14(1):29330. doi: 10.1038/s41598-024-80842-z.
The proliferation of multimedia-based deepfake content in recent years has posed significant challenges to information security and authenticity, necessitating the use of methods beyond dependable dynamic detection. In this paper, we utilize the powerful combination of Deep Generative Adversarial Networks (GANs) and Transfer Learning (TL) to introduce a new technique for identifying deepfakes in multimedia systems. Each of the GAN architectures may be customized to detect subtle changes in different multimedia formats by combining their advantages. A multi-collaborative framework called "MCGAN" is developed because it contains audio, video, and image files. This framework is compared to other state-of-the-art techniques to estimate the overall fluctuation based on performance, improving the accuracy rate by up to 17.333% and strengthening the deepfake detection hierarchy. In order to accelerate the training process overall and enable the system to respond rapidly to novel patterns that indicate deepfakes, TL employs the pre-train technique on the same databases. When it comes to identifying the contents of deepfakes, the proposed method performs quite well. In a range of multimedia scenarios, this enhances real-time detection capabilities while preserving a high level of accuracy. A progressive hierarchy that ensures information integrity in the digital world and related research is taken into consideration in this development.
近年来,基于多媒体的深度伪造内容激增,给信息安全和真实性带来了重大挑战,因此需要使用超越可靠动态检测的方法。在本文中,我们利用深度生成对抗网络(GAN)和迁移学习(TL)的强大组合,引入一种用于识别多媒体系统中深度伪造内容的新技术。通过结合GAN架构各自的优势,可以对每个架构进行定制,以检测不同多媒体格式中的细微变化。由于包含音频、视频和图像文件,我们开发了一个名为“MCGAN”的多协作框架。将该框架与其他现有技术进行比较,以根据性能评估总体波动情况,准确率提高了17.333%,并加强了深度伪造检测层次结构。为了全面加速训练过程,并使系统能够快速响应指示深度伪造的新模式,迁移学习在相同数据库上采用预训练技术。在识别深度伪造内容方面,所提出的方法表现相当出色。在一系列多媒体场景中,这提高了实时检测能力,同时保持了较高的准确性。在此开发过程中考虑了一个确保数字世界信息完整性的渐进层次结构以及相关研究。