Mapinda John J, Hugo Alfred K, Shinzeh Jairos K, Edward Stephen
Department of Mathematics and Statistics, The University of Dodoma, P.O. Box 259, Dodoma, Tanzania.
Department of Mathematics, The Mwalimu Julius K. Nyerere University of Agriculture and Technology, P.O. Box 976, Musoma, Tanzania.
Sci Rep. 2025 Jun 6;15(1):20010. doi: 10.1038/s41598-025-94881-7.
Banana bunchy top disease (BBTD) significantly threatens banana production, considerably endangering food safety and security. Aphid vectors and the use of latently infected planting materials disseminate the disease. This paper uses a deterministic mathematical model to examine the BBTD dynamics while considering the Banana Bunchy Top Virus (BBTV)-resistance of the planting material. After model formulation, we establish the positivity and boundedness of the model solution. We derived the effective reproduction number via the next-generation matrix approach and used it to investigate the asymptotic stability of the model equilibrium points using the Lyapunov function. To support the stability results, we conducted a bifurcation analysis. The bifurcation analysis confirmed a forward bifurcation, implying that the disease-free equilibrium point is stable when the effective reproduction number is less than one and unstable when the effective reproduction number is greater than one. The endemic equilibrium point is also stable when the effective reproduction number is greater than one and unstable otherwise. Finally, we apply the fourth-order Runge-Kutta method to simulate the proposed model. One limitation of our research is the need for real data to support our findings. in this instance, we used simulated data from earlier studies to conduct numerical simulations in this study. The results revealed that replanting with BBTV-resistance planting material while the rate of removing symptomatic infected plants is [Formula: see text] reduces the number of latent and symptomatic infected banana plants by [Formula: see text] and [Formula: see text], respectively, in two years. Moreover, it was observed that increasing the rate of roguing to [Formula: see text] and replanting with BBTV-resistant planting material remaining at [Formula: see text] cleared the diseased plants in 10 months. Hence, it eliminates the disease. Therefore, the numerical simulation results suggest that while virus-resistant planting materials alone can reduce disease prevalence, they are most effective when combined with a timely roguing strategy. The results indicate that increasing the number of resistant plants beyond a certain threshold can lead to disease elimination. It is recommended that scientists provide farmers with reliable BBTV-resistant planting material and farming education on the safe way to rogue infected plants and replant.
香蕉束顶病(BBTD)严重威胁香蕉生产,极大地危及食品安全和保障。蚜虫媒介以及使用潜伏感染的种植材料传播这种疾病。本文使用确定性数学模型来研究BBTD动态,同时考虑种植材料对香蕉束顶病毒(BBTV)的抗性。在模型构建之后,我们确立了模型解的正性和有界性。我们通过下一代矩阵方法推导出有效繁殖数,并使用李雅普诺夫函数用它来研究模型平衡点的渐近稳定性。为了支持稳定性结果,我们进行了分岔分析。分岔分析证实了正向分岔,这意味着当有效繁殖数小于1时无病平衡点是稳定的,而当有效繁殖数大于1时是不稳定的。当有效繁殖数大于1时地方病平衡点也是稳定的,否则是不稳定的。最后,我们应用四阶龙格 - 库塔方法来模拟所提出的模型。我们研究的一个局限性是需要实际数据来支持我们的发现。在这种情况下,我们在本研究中使用早期研究的模拟数据进行数值模拟。结果表明,当去除有症状感染植株的速率为[公式:见原文]时,用抗BBTV的种植材料重新种植,在两年内分别使潜伏感染和有症状感染的香蕉植株数量减少[公式:见原文]和[公式:见原文]。此外,观察到将清除病株速率提高到[公式:见原文]并保持抗BBTV种植材料的重新种植率为[公式:见原文],能在10个月内清除患病植株。因此,它消除了这种疾病。所以,数值模拟结果表明,虽然仅抗病毒种植材料就能降低疾病流行率,但与及时的清除病株策略相结合时最为有效。结果表明,将抗性植株数量增加到超过某个阈值可导致疾病消除。建议科学家为农民提供可靠的抗BBTV种植材料,并就安全清除感染植株和重新种植的方法进行农业教育。