Suppr超能文献

利用光学和雷达数据鉴别相思树种的时间变化。

Temporal variation in discriminating Acacia species using optical and radar data.

作者信息

Matsokane King, Tesfamichael Solomon G

机构信息

Department of Geography, Environmental Management and Energy Studies, University of Johannesburg, Johannesburg, South Africa.

出版信息

Sci Rep. 2025 Jun 6;15(1):19991. doi: 10.1038/s41598-025-05099-6.

Abstract

This study investigated the efficacy of Sentinel-1 radar and Sentinel-2 optical data to classify Acacia cyclops and A. mearnsii species for each month of a year using the Extreme Gradient Boosting classifier. Sentinel-2 bands and their derivative indices yielded modest overall accuracies (69-77%) in detecting Acacia species across months. Comparable accuracies were obtained (75-79%) by adding Sentinel-1 radar data. The producer's accuracies varied with month for both Acacia species (60-65%) when using Sentinel-2 products. Adding radar data improved these accuracies for nearly all months by 4-32%. In all cases, better accuracies were obtained in summer and autumn months. Variable importance comparison revealed that the Sentinel-2 visible bands, RedEdge bands and their derivative indices to be the highest contributors in the identification of the Acacia species. Although the radar data showed more importance in distinguishing Acacia from the other land cover groups than from each other, they did not improve the classification accuracies significantly. The inability of radar to differentiate the Acacia species was attributed to the lack of distinctive structural variation between the two species. The findings of this study show the importance of data acquisition time in the classification effort while more research is needed to exploit radar data.

摘要

本研究利用极端梯度提升分类器,调查了哨兵-1雷达数据和哨兵-2光学数据在一年中每个月对独眼相思树和黑荆树进行分类的效果。哨兵-2波段及其衍生指数在逐月检测相思树种方面总体准确率适中(69%-77%)。通过添加哨兵-1雷达数据,可获得相当的准确率(75%-79%)。使用哨兵-2产品时,两种相思树种的生产者准确率随月份变化(60%-65%)。添加雷达数据后,几乎所有月份的这些准确率提高了4%-32%。在所有情况下,夏秋季的准确率更高。变量重要性比较表明,哨兵-2可见光波段、红边波段及其衍生指数在相思树种识别中贡献最大。尽管雷达数据在区分相思树与其他土地覆盖类型方面比区分相思树不同种类更重要,但它们并未显著提高分类准确率。雷达无法区分相思树种的原因是这两个物种之间缺乏明显的结构差异。本研究结果表明了数据采集时间在分类工作中的重要性,同时还需要更多研究来利用雷达数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c87c/12144260/47eeea51881d/41598_2025_5099_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验