Luo Dan, Zhou Jinyu, Xu Le, Yuan Sisi, Lin Xuan
School of Computer Science, Xiangtan University, Xiangtan, 411105, China.
Department of Bioinformatics and Genomics, the University of North Carolina at Charlotte, Charlotte, 28223, USA.
Interdiscip Sci. 2025 Jun 6. doi: 10.1007/s12539-025-00729-z.
Predicting drug-target binding affinity (DTA) is essential for identifying potential therapeutic candidates in drug discovery. However, most existing models rely heavily on static protein structures, often overlooking the dynamic nature of proteins, which is crucial for capturing conformational flexibility that will be beneficial for protein binding interactions.
We introduce DynamicDTA, an innovative deep learning framework that incorporates static and dynamic protein features to enhance DTA prediction. The proposed DynamicDTA takes three types of inputs, including drug sequence, protein sequence, and dynamic descriptors. A molecular graph representation of the drug sequence is generated and subsequently processed through graph convolutional network, while the protein sequence is encoded using dilated convolutions. Dynamic descriptors, such as root mean square fluctuation, are processed through a multi-layer perceptron. These embedding features are fused with static protein features using cross-attention, and a tensor fusion network integrates all three modalities for DTA prediction.
Extensive experiments on three datasets demonstrate that DynamicDTA achieves by at least 3.4% improvement in score with comparison to seven state-of-the-art baseline methods. Additionally, predicting novel drugs for Human Immunodeficiency Virus Type 1 and visualizing the docking complexes further demonstrates the reliability and biological relevance of DynamicDTA.
The source code is publicly available and can be accessed at https://github.com/shmily-ld/DynamicDTA .
预测药物-靶点结合亲和力(DTA)对于在药物研发中识别潜在的治疗候选药物至关重要。然而,大多数现有模型严重依赖静态蛋白质结构,常常忽略了蛋白质的动态特性,而这种动态特性对于捕捉构象灵活性至关重要,构象灵活性有利于蛋白质结合相互作用。
我们引入了DynamicDTA,这是一个创新的深度学习框架,它结合了静态和动态蛋白质特征以增强DTA预测。所提出的DynamicDTA采用三种类型的输入,包括药物序列、蛋白质序列和动态描述符。生成药物序列的分子图表示,随后通过图卷积网络进行处理,而蛋白质序列则使用扩张卷积进行编码。动态描述符,如均方根波动,通过多层感知器进行处理。这些嵌入特征使用交叉注意力与静态蛋白质特征融合,并且张量融合网络整合所有三种模态以进行DTA预测。
在三个数据集上进行的广泛实验表明,与七种最先进的基线方法相比,DynamicDTA在得分上至少提高了3.4%。此外,预测针对1型人类免疫缺陷病毒的新型药物并可视化对接复合物进一步证明了DynamicDTA的可靠性和生物学相关性。
源代码是公开可用的,可以在https://github.com/shmily-ld/DynamicDTA上访问。