School of Computer Science, Hunan First Normal University, Changsha, Hunan, China.
Hunan Provincial Key Laboratory of Intelligent Processing of Big Data on Transportation, Changsha University of Science and Technology Changsha, Hunan, China.
Methods. 2024 Nov;231:1-7. doi: 10.1016/j.ymeth.2024.08.008. Epub 2024 Aug 30.
Accurately predicting drug-target affinity is crucial in expediting the discovery and development of new drugs, which is a complex and risky process. Identifying these interactions not only aids in screening potential compounds but also guides further optimization. To address this, we propose a multi-perspective feature fusion model, MFF-DTA, which integrates chemical structure, biological sequence, and other data to comprehensively capture drug-target affinity features. The MFF-DTA model incorporates multiple feature learning components, each of which is capable of extracting drug molecular features and protein target information, respectively. These components are able to obtain key information from both global and local perspectives. Then, these features from different perspectives are efficiently combined using specific splicing strategies to create a comprehensive representation. Finally, the model uses the fused features to predict drug-target affinity. Comparative experiments show that MFF-DTA performs optimally on the Davis and KIBA data sets. Ablation experiments demonstrate that removing specific components results in the loss of unique information, thus confirming the effectiveness of the MFF-DTA design. Improvements in DTA prediction methods will decrease costs and time in drug development, enhancing industry efficiency and ultimately benefiting patients.
准确预测药物-靶标亲和力对于加速新药的发现和开发至关重要,这是一个复杂且有风险的过程。识别这些相互作用不仅有助于筛选潜在的化合物,还可以指导进一步的优化。为了解决这个问题,我们提出了一种多视角特征融合模型 MFF-DTA,该模型集成了化学结构、生物序列和其他数据,以全面捕捉药物-靶标亲和力特征。MFF-DTA 模型包含多个特征学习组件,每个组件都能够分别提取药物分子特征和蛋白质靶标信息。这些组件能够从全局和局部视角获取关键信息。然后,使用特定的拼接策略有效地组合来自不同视角的这些特征,以创建全面的表示。最后,模型使用融合的特征来预测药物-靶标亲和力。对比实验表明,MFF-DTA 在 Davis 和 KIBA 数据集上表现最佳。消融实验表明,删除特定组件会导致丢失独特信息,从而证实了 MFF-DTA 设计的有效性。改进 DTA 预测方法将降低药物开发的成本和时间,提高行业效率,最终使患者受益。