Suppr超能文献

AttentionMGT-DTA:一种基于图变换和注意力机制的多模态药物-靶标亲和力预测方法。

AttentionMGT-DTA: A multi-modal drug-target affinity prediction using graph transformer and attention mechanism.

机构信息

School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.

School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; Yangtze Delta Region Institute(Quzhou), University of Electronic Science and Technology of China, Quzhou, 324003, China.

出版信息

Neural Netw. 2024 Jan;169:623-636. doi: 10.1016/j.neunet.2023.11.018. Epub 2023 Nov 11.

Abstract

The accurate prediction of drug-target affinity (DTA) is a crucial step in drug discovery and design. Traditional experiments are very expensive and time-consuming. Recently, deep learning methods have achieved notable performance improvements in DTA prediction. However, one challenge for deep learning-based models is appropriate and accurate representations of drugs and targets, especially the lack of effective exploration of target representations. Another challenge is how to comprehensively capture the interaction information between different instances, which is also important for predicting DTA. In this study, we propose AttentionMGT-DTA, a multi-modal attention-based model for DTA prediction. AttentionMGT-DTA represents drugs and targets by a molecular graph and binding pocket graph, respectively. Two attention mechanisms are adopted to integrate and interact information between different protein modalities and drug-target pairs. The experimental results showed that our proposed model outperformed state-of-the-art baselines on two benchmark datasets. In addition, AttentionMGT-DTA also had high interpretability by modeling the interaction strength between drug atoms and protein residues. Our code is available at https://github.com/JK-Liu7/AttentionMGT-DTA.

摘要

准确预测药物-靶标亲和力(DTA)是药物发现和设计的关键步骤。传统实验非常昂贵且耗时。最近,深度学习方法在 DTA 预测方面取得了显著的性能提升。然而,基于深度学习的模型面临的一个挑战是如何对药物和靶标进行适当和准确的表示,特别是缺乏对靶标表示的有效探索。另一个挑战是如何全面捕捉不同实例之间的交互信息,这对于预测 DTA 也很重要。在这项研究中,我们提出了 AttentionMGT-DTA,这是一种用于 DTA 预测的基于多模态注意力的模型。AttentionMGT-DTA 通过分子图和结合口袋图分别表示药物和靶标。采用两种注意力机制来整合和交互不同蛋白质模态和药物-靶标对之间的信息。实验结果表明,我们提出的模型在两个基准数据集上优于最先进的基线。此外,通过对药物原子和蛋白质残基之间相互作用强度的建模,AttentionMGT-DTA 还具有较高的可解释性。我们的代码可在 https://github.com/JK-Liu7/AttentionMGT-DTA 上获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验