Fischer Leo, Mann Paula Antonia, Nguyen Minh-Hieu H, Becker Stefan, Khodadadi Shiva, Schulz Antonia, Edwin Thanarajah Sharmili, Repple Jonathan, Hahn Tim, Reif Andreas, Salamikhanshan Amir, Kittel-Schneider Sarah, Rief Winfried, Mulert Christoph, Hofmann Stefan G, Dannlowski Udo, Kircher Tilo, Bernhard Felix P, Jamalabadi Hamidreza
Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany.
Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany.
BMC Psychiatry. 2025 Jun 6;25(1):584. doi: 10.1186/s12888-025-06957-3.
Mental disorders represent a major global health challenge, with an estimated lifetime prevalence approaching 30%. Despite the availability of effective treatments, access to mental health care remains inadequate. Computational psychiatry, leveraging advancements in artificial intelligence (AI) and machine learning (ML), has shown potential for transforming mental health care by improving diagnosis, prognosis, and the personalization of treatment. However, integrating these technologies into routine clinical practice remains limited due to technical and infrastructure challenges. While ongoing computational developments will enhance AI's precision, many studies focus on its broad potential without providing specific, clinician-informed guidance for immediate application. To address this gap and the urgent need for clinically actionable AI tools, we surveyed 53 psychiatrists and clinical psychologists to identify their priorities for AI in mental health care. Our findings reveal a strong preference for tools enabling continuous monitoring and predictive modeling, particularly in outpatient settings. Clinicians prioritize accurate predictions of symptom trajectories and proactive patient monitoring over interpretability and explicit treatment recommendations. Self-reports, third-party observations, and sleep quality and duration emerged as key data inputs for effective models. Together, this study provides a clinician-driven roadmap for AI integration, emphasizing predictive models based on ecological momentary assessment (EMA) data to forecast disorder trajectories and support real-world practice.
精神障碍是一项重大的全球健康挑战,估计终生患病率接近30%。尽管有有效的治疗方法,但获得精神卫生保健的机会仍然不足。计算精神病学利用人工智能(AI)和机器学习(ML)的进展,已显示出通过改善诊断、预后和治疗个性化来改变精神卫生保健的潜力。然而,由于技术和基础设施方面的挑战,将这些技术整合到常规临床实践中的情况仍然有限。虽然正在进行的计算发展将提高人工智能的精度,但许多研究关注的是其广泛的潜力,而没有提供针对立即应用的具体的、临床医生提供的指导。为了填补这一空白以及满足对具有临床可操作性的人工智能工具的迫切需求,我们调查了53名精神科医生和临床心理学家,以确定他们在精神卫生保健中对人工智能的优先考虑事项。我们的研究结果显示,人们强烈倾向于能够进行持续监测和预测建模的工具,特别是在门诊环境中。临床医生将准确预测症状轨迹和对患者进行主动监测置于可解释性和明确的治疗建议之上。自我报告、第三方观察以及睡眠质量和时长成为有效模型的关键数据输入。总之,本研究为人工智能的整合提供了一份由临床医生驱动的路线图,强调基于生态瞬时评估(EMA)数据的预测模型,以预测疾病轨迹并支持实际应用。