Suppr超能文献

对精神病学人工智能的期望。

Expectations for Artificial Intelligence (AI) in Psychiatry.

机构信息

Michigan State University College of Human Medicine, Traverse City Campus, Traverse City, MI, 49684, USA.

ChronoRecord Association, Fullerton, CA, USA.

出版信息

Curr Psychiatry Rep. 2022 Nov;24(11):709-721. doi: 10.1007/s11920-022-01378-5. Epub 2022 Oct 10.

Abstract

PURPOSE OF REVIEW

Artificial intelligence (AI) is often presented as a transformative technology for clinical medicine even though the current technology maturity of AI is low. The purpose of this narrative review is to describe the complex reasons for the low technology maturity and set realistic expectations for the safe, routine use of AI in clinical medicine.

RECENT FINDINGS

For AI to be productive in clinical medicine, many diverse factors that contribute to the low maturity level need to be addressed. These include technical problems such as data quality, dataset shift, black-box opacity, validation and regulatory challenges, and human factors such as a lack of education in AI, workflow changes, automation bias, and deskilling. There will also be new and unanticipated safety risks with the introduction of AI. The solutions to these issues are complex and will take time to discover, develop, validate, and implement. However, addressing the many problems in a methodical manner will expedite the safe and beneficial use of AI to augment medical decision making in psychiatry.

摘要

目的综述

人工智能(AI)常被视为临床医学的变革性技术,尽管当前 AI 的技术成熟度较低。本叙述性综述的目的是描述导致技术成熟度低的复杂原因,并为 AI 在临床医学中的安全、常规使用设定切合实际的期望。

最近发现

为使 AI 在临床医学中具有生产力,需要解决许多导致其低成熟度的不同因素。这些因素包括数据质量、数据集转换、黑箱不透明性、验证和监管方面的技术问题,以及人工智能教育缺乏、工作流程变化、自动化偏差和技能减损等人为因素。随着 AI 的引入,还将产生新的和意想不到的安全风险。这些问题的解决方案很复杂,需要时间去发现、开发、验证和实施。然而,有条不紊地解决这些问题将加速 AI 的安全和有益使用,以增强精神病学中的医疗决策。

相似文献

1
Expectations for Artificial Intelligence (AI) in Psychiatry.对精神病学人工智能的期望。
Curr Psychiatry Rep. 2022 Nov;24(11):709-721. doi: 10.1007/s11920-022-01378-5. Epub 2022 Oct 10.
5
Artificial intelligence in oncology: Path to implementation.人工智能在肿瘤学中的应用:实施之路。
Cancer Med. 2021 Jun;10(12):4138-4149. doi: 10.1002/cam4.3935. Epub 2021 May 7.

引用本文的文献

9
A review on the efficacy of artificial intelligence for managing anxiety disorders.人工智能在焦虑症管理中的疗效综述。
Front Artif Intell. 2024 Oct 16;7:1435895. doi: 10.3389/frai.2024.1435895. eCollection 2024.

本文引用的文献

1
Medical Algorithms Need Better Regulation.医学算法需要更好的监管。
Sci Am. 2022 Jan 1;326(1):10. doi: 10.1038/scientificamerican0122-10.
4
The medical algorithmic audit.医学算法审计
Lancet Digit Health. 2022 May;4(5):e384-e397. doi: 10.1016/S2589-7500(22)00003-6. Epub 2022 Apr 5.
6
Implicit data crimes: Machine learning bias arising from misuse of public data.隐性数据犯罪:因公共数据滥用导致的机器学习偏差
Proc Natl Acad Sci U S A. 2022 Mar 29;119(13):e2117203119. doi: 10.1073/pnas.2117203119. Epub 2022 Mar 21.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验