Wu Qitao, Lin Zhenzhen, Zou Yuzhi, Huang Wenxin, Li Yanshi, Huang Xiaosen, Wang Jiankai, Toshov Javokhir, Donaev Sardor, Tao Hengcong, Li Shunli
School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316022, China.
National & Local Joint Engineering Research Center of Harbor Oil & Gas Storage and Transportation Technology, Zhoushan 316022, China.
Inorg Chem. 2025 Jun 23;64(24):12254-12263. doi: 10.1021/acs.inorgchem.5c01617. Epub 2025 Jun 7.
Electrocatalytic oxidation of 5-hydroxymethylfurfural to prepare high-value-added chemicals is an effective solution for a sustainable alternative to fossil fuels. We report a novel one-step hydrothermal sulfurization strategy to construct hierarchical FeNi-S@NF nanoflower architectures comprising interconnected 2D nanosheets. This catalyst design synergistically integrates high conductivity (i.e., nickel foam (NF) substrate), abundant active sites (i.e., 2D nanosheet), and optimized electronic structure (i.e., sulfur doping), achieving exceptional electrocatalytic 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA) conversion. By optimizing the classical two-step hydrothermal sulfidation approach through precise control of metal ratios and sulfidation duration, we significantly enhanced the catalytic performance for the HMF oxidation reaction (HMFOR). Sulfur doping was found to substantially improve the catalyst's adsorption capability for HMFOR intermediates, thereby enhancing both activity and selectivity toward FDCA production. The optimized FeNi-S@NF nanoflower catalyst demonstrated superior electrocatalytic performance in 1 M KOH + 50 mM HMF, achieving 98.41% conversion rate, 92.08% FDCA yield, and 89.19% Faradaic efficiency at an applied potential of 1.45 V vs a reversible hydrogen electrode (RHE), surpassing most reported transition metal-based electrocatalysts. This research work provides a new strategy for the rapid and low-cost synthesis of two-dimensional sulfide nanoelectrocatalysts for the efficient electrooxidation process of biomass derivatives.
将5-羟甲基糠醛电催化氧化以制备高附加值化学品是化石燃料可持续替代方案的有效解决办法。我们报道了一种新颖的一步水热硫化策略,用于构建由相互连接的二维纳米片组成的分级FeNi-S@NF纳米花结构。这种催化剂设计协同整合了高导电性(即泡沫镍(NF)基底)、丰富的活性位点(即二维纳米片)和优化的电子结构(即硫掺杂),实现了将5-羟甲基糠醛(HMF)高效电催化转化为2,5-呋喃二甲酸(FDCA)。通过精确控制金属比例和硫化持续时间来优化经典的两步水热硫化方法,我们显著提高了HMF氧化反应(HMFOR)的催化性能。发现硫掺杂可大幅提高催化剂对HMFOR中间体的吸附能力,从而增强对FDCA生成的活性和选择性。优化后的FeNi-S@NF纳米花催化剂在1 M KOH + 50 mM HMF中表现出优异的电催化性能,在相对于可逆氢电极(RHE)为1.45 V的外加电位下,实现了98.41%的转化率、92.08%的FDCA产率和89.19%的法拉第效率,超过了大多数已报道的基于过渡金属的电催化剂。这项研究工作为生物质衍生物高效电氧化过程中二维硫化物纳米电催化剂的快速低成本合成提供了一种新策略。