Suppr超能文献

通过具有Pt活性中心的COF衍生的N、P、S多配位多孔碳促进N还原与生物质氧化的电化学耦合。

Boosting electrochemical coupling of N reduction and biomass oxidation via COF-derived N,P,S-multicoordinated porous carbon with Pt active centers.

作者信息

He Na, Liu Xiyang, Wu Lijuan, Yang Jiayin, Ni Huiting, Wang Shuqi, Guo Yong, Kang Yue, Liu Yixin, Tong Liping, Lu Binfeng, Guo Gaijuan, Han Sheng, Li Wenda, Yang Miaosen, Wei Facai, Han Zhiya

机构信息

School of Materials, Shanghai Dianji University, No.300, Shuihua Road, Pudong New Area, Shanghai 200245, China.

School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China.

出版信息

J Colloid Interface Sci. 2025 Dec;699(Pt 1):138179. doi: 10.1016/j.jcis.2025.138179. Epub 2025 Jun 16.

Abstract

The electrochemical nitrogen reduction reaction (eNRR) is a sustainable pathway for ammonia synthesis, yet it faces challenges in selectivity and efficiency. Herein, we report a catalyst characterized by the uniform anchoring of Pt single-atom centers within a nitrogen, phosphorus, sulfur, and carbon (NPSC) multiligand framework, thereby maximizing the advantages of the Pt noble metal and significantly enhancing the eNRR performance. In this catalyst, sulfur-modulated anchoring of the Pt center induces ligand-to-metal charge transfer (LMCT), primarily leveraging the strong interaction between the Pt 4f band and the S 2p orbitals to activate and protonate N effectively. Key findings include an ammonia yield rate (R) of 93.97μg h mgcat and a Faradaic efficiency (FE) of 46.64 % at - 0.30 V vs RHE. Furthermore, advanced flow cell technology improves material transfer efficiency, achieving an R of 326.87μg h mgcat, outperforming many previously reported materials. Moreover, coupling eNRR with the oxidation of 5-hydroxymethylfurfural (HMFOR) enables the concurrent production of green ammonia and high-value chemicals. In situ Raman spectroscopy identifies the -NH group as a crucial intermediate, while Density functional theory (DFT) calculations reveal that the Pt-NPSC catalyst lowers the activation energy for N adsorption and activation. These findings highlight the critical role of innovative catalyst design and device optimization in advancing sustainable ammonia synthesis and provide valuable insights for improving eNRR performance.

摘要

电化学氮还原反应(eNRR)是一种可持续的氨合成途径,但它在选择性和效率方面面临挑战。在此,我们报道了一种催化剂,其特征在于铂单原子中心均匀锚定在氮、磷、硫和碳(NPSC)多配体框架内,从而最大限度地发挥了铂贵金属的优势,并显著提高了eNRR性能。在这种催化剂中,硫调节的铂中心锚定诱导配体到金属的电荷转移(LMCT),主要利用铂4f能带与硫2p轨道之间的强相互作用来有效激活和质子化氮。关键发现包括在相对于可逆氢电极(RHE)为 - 0.30 V时,氨产率(R)为93.97μg h mgcat,法拉第效率(FE)为46.64%。此外,先进的流动池技术提高了物质传输效率,实现了326.87μg h mgcat的R,优于许多先前报道的材料。此外,将eNRR与5-羟甲基糠醛氧化(HMFOR)耦合能够同时生产绿色氨和高价值化学品。原位拉曼光谱确定 -NH基团为关键中间体,而密度泛函理论(DFT)计算表明,Pt-NPSC催化剂降低了氮吸附和激活的活化能。这些发现突出了创新催化剂设计和器件优化在推进可持续氨合成中的关键作用,并为提高eNRR性能提供了有价值的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验