Suppr超能文献

用于高效氮电还原制氨的三明治状WS@MoS₂/1D核壳异质结构

Sandwich-like WS@MoS 2/1D Core-Shell Heterostructures for Efficient Nitrogen Electroreduction to Ammonia.

作者信息

Cui Baochen, Cao Min, Weng Jinwei, Li Yutong, Wang Chen, Liu Junchao, Wen Yihao, Tao Leiming, Liu Shuzhi

机构信息

Key Laboratory of Inferior Crude Oil Processing of Guangdong Provincial Higher Education Institutes, College of Chemical Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China.

出版信息

ACS Appl Mater Interfaces. 2025 Jul 2;17(26):38648-38657. doi: 10.1021/acsami.5c05671. Epub 2025 Jun 23.

Abstract

The electrocatalytic nitrogen reduction reaction (eNRR) into ammonia is considered a sustainable alternative to the traditional Haber-Bosch process. However, the problematic N activation and the competing hydrogen evolution reaction (HER) significantly hinder achieving satisfactory performance in aqueous electrolytes. Herein, we synthesized an eNRR electrocatalyst featuring MoS nanowire (NW) arrays that grow uniformly and vertically through intercalation between the interlayers of WS nanosheets (NSs), forming sandwich-like WS@MoS 2/1D core-shell heterostructures. The thickness of WS NSs is ∼100 nm, while MoS NWs have a length of 71.49 ± 15.56 nm and a diameter of 8.56 ± 1.17 nm. This structure enhances the exposure of the basal planes and edges of MoS. Additionally, the MoS NWs possess abundant lattice dislocations and vacancies in both Mo and S. The strong interfacial electron interactions between the WS core and MoS shell significantly enhance the catalytic activity for eNRR. As a result, the WS@MoS heterostructures achieve a high NH yield rate of 61.79 μg h cm and a Faradaic efficiency of 21.64% at -0.3 V vs RHE, surpassing that of both WS and MoS counterparts, as well as most other reported NRR electrocatalysts in aqueous electrolytes. This work offers valuable insights into the design of heterostructures to boost the activity and selectivity of eNRR to ammonia simultaneously.

摘要

将电催化氮还原反应(eNRR)转化为氨被认为是传统哈伯-博施法的一种可持续替代方法。然而,有问题的氮活化和竞争性析氢反应(HER)显著阻碍了在水性电解质中实现令人满意的性能。在此,我们合成了一种eNRR电催化剂,其具有通过插入WS纳米片(NSs)的层间而均匀且垂直生长的MoS纳米线(NW)阵列,形成三明治状的WS@MoS 2/1D核壳异质结构。WS NSs的厚度约为100 nm,而MoS NWs的长度为71.49±15.56 nm,直径为8.56±1.17 nm。这种结构增强了MoS基面和边缘的暴露。此外,MoS NWs在Mo和S中都具有丰富的晶格位错和空位。WS核与MoS壳之间强烈的界面电子相互作用显著增强了eNRR的催化活性。结果,WS@MoS异质结构在相对于可逆氢电极(RHE)为-0.3 V时实现了61.79 μg h cm的高氨产率和21.64%的法拉第效率,超过了WS和MoS同类材料以及大多数其他报道的水性电解质中的NRR电催化剂。这项工作为设计异质结构以同时提高eNRR对氨的活性和选择性提供了有价值的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验