Suppr超能文献

用于高效氧还原催化的铂-钴-锌三金属纳米颗粒的调谐应变

Tuning strain of Platinum-Cobalt-Zinc trimetallic nanoparticles for efficient oxygen reduction Catalysis.

作者信息

Wang Weizhi, Cai Yingying, Tian Pengfei, Xu Jing, Xuan Fuzhen

机构信息

School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.

Key Laboratory of Pressure Systems and Safety (Ministry of Education), School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China.

出版信息

J Colloid Interface Sci. 2025 Nov 15;698:138046. doi: 10.1016/j.jcis.2025.138046. Epub 2025 Jun 1.

Abstract

Controlling strain in nanomaterials is a key strategy for tuning the mechanics-chemistry interaction and enhance the performance of heterogeneous catalysts. Here, we present a straightforward one-pot synthesis approach for fabricating platinum-cobalt-zinc (PtCoZn) trimetallic catalysts with adjustable Pt strain, enabling exceptional catalytic performance for the oxygen reduction reaction (ORR), comparable to that of state-of-the-art Pt-based alloy catalysts. With increasing the contents of Co and Zn, transmission electron microscope (TEM) reveals that the lattice spacings decreases from 2.26 Å for Pt to 2.19 Å for PtCoZn. This indicates that the addition of Zn and Co induces compressive strain in Pt, a finding further corroborated by extended X-ray adsorption fine structure (EXAFS). PtCoZn with a lattice space of 2.23 Å exhibits the optimum performance, achieving a mass activity (MA) of 3.25 A/mg and a specific activity (SA) of 7.57 mA/cm, which are 4.3 times and 7 times higher than those of the commercial Pt/C catalyst, respectively. Moreover, the catalyst demonstrates robust electrochemical durability with negligible activity degradation after 50,000 cycles. The catalytic mechanism is elucidated through in situ electrochemical reflection Fourier transformed infrared (FTIR) and density functional theory (DFT) calculations. The compressive strain in Pt, which weakens the binding strength of oxygen intermediates and enhances ORR activity, is primarily induced by the incorporation of Zn. Meanwhile, Co doping suppresses Zn leaching and improves the stability of PtCoZn by anchoring Zn atoms within the inner layers of the alloy particles. This work sheds new light on developing catalysts through strain engineering in multimetallic systems.

摘要

控制纳米材料中的应变是调节力学 - 化学相互作用以及提高多相催化剂性能的关键策略。在此,我们提出了一种直接的一锅合成方法来制备具有可调铂应变的铂 - 钴 - 锌(PtCoZn)三金属催化剂,该催化剂在氧还原反应(ORR)中具有卓越的催化性能,可与最先进的铂基合金催化剂相媲美。随着钴和锌含量的增加,透射电子显微镜(TEM)显示晶格间距从铂的2.26 Å减小到PtCoZn的2.19 Å。这表明锌和钴的添加在铂中诱导了压缩应变,扩展X射线吸收精细结构(EXAFS)进一步证实了这一发现。晶格间距为2.23 Å的PtCoZn表现出最佳性能,质量活性(MA)达到3.25 A/mg,比活性(SA)达到7.57 mA/cm,分别是商业Pt/C催化剂的4.3倍和7倍。此外,该催化剂表现出强大的电化学耐久性,在50,000次循环后活性降解可忽略不计。通过原位电化学反射傅里叶变换红外(FTIR)和密度泛函理论(DFT)计算阐明了催化机理。铂中的压缩应变削弱了氧中间体的结合强度并提高了ORR活性,这主要是由锌的掺入引起的。同时,钴掺杂抑制了锌的浸出,并通过将锌原子锚定在合金颗粒的内层中来提高PtCoZn的稳定性。这项工作为通过多金属系统中的应变工程开发催化剂提供了新的思路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验