Suppr超能文献

用于高效碱性析氢的 α-MoC 负载稳定拉伸应变铂单原子层催化剂

Stable Tensile-Strained Pt Single Atomic Layer Catalysts on α-MoC for Efficient Alkaline Hydrogen Evolution.

作者信息

Zhao Yaohui, Huang Jiapeng, Zhang Ke, Li Yanan, Ge Zixin, Zheng Yangzi, Ji Shangdong, Lu Junhao, Ren Yuan, Wu Chao, Jin Mingshang

机构信息

Frontier Institute of Science and Technology and State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.

Interdisciplinary Research Center of Frontier Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.

出版信息

ACS Nano. 2025 Jul 15;19(27):25273-25283. doi: 10.1021/acsnano.5c05972. Epub 2025 Jun 27.

Abstract

Developing Pt-based core-shell catalysts with ultralow Pt loading, superior performance, and extended durability holds tremendous potential for advancing electrochemical energy storage and conversion technologies. However, current synthetic limitations persist in achieving atomically efficient Pt monolayer deposition on nonprecious metal substrates, hindering the maximization of Pt atomic utilization for cost-effective catalyst design. Here, we demonstrate a galvanic replacement strategy to synthesize tensile-strained platinum single-atom-layer (Pt SAL) on α-MoC substrates. The Pt SAL catalysts enable cooperative catalysis between adjacent Pt sites while maintaining nearly 100% atomic utilization efficiency. For alkaline hydrogen evolution, the Pt SAL/α-MoC catalyst exhibits optimized reaction energetics, reducing activation barriers for water dissociation, hydrogen adsorption, and H desorption compared to typical Pt/C. As a result, the Pt SAL catalysts exhibit superior hydrogen evolution reaction (HER) performance, with a mass activity of 1.71 A mg at an overpotential of 50 mV, surpassing commercial Pt/C by 6.35-fold and single-atom catalysts by 7.68-fold. Remarkably, the Pt SAL catalysts reveal negligible activity decay after 10,000 cycles, with density functional theory (DFT) calculations attributing this stability to strong Pt-Mo interfacial bonding. Raman spectroscopic studies reveal dynamic interfacial water restructuring that accelerates reaction kinetics. This work establishes a versatile synthesis approach for noble metal SAL catalysts and explores their role in designing high-performance electrocatalysts for heterogeneous catalysis.

摘要

开发具有超低铂负载量、卓越性能和延长耐久性的铂基核壳催化剂,对于推进电化学储能和转换技术具有巨大潜力。然而,目前在非贵金属基底上实现原子级高效铂单层沉积仍存在合成限制,这阻碍了在具有成本效益的催化剂设计中铂原子利用率的最大化。在此,我们展示了一种电置换策略,用于在α-MoC基底上合成拉伸应变的铂单原子层(Pt SAL)。Pt SAL催化剂能够实现相邻铂位点之间的协同催化,同时保持近100%的原子利用效率。对于碱性析氢反应,与典型的Pt/C相比,Pt SAL/α-MoC催化剂表现出优化的反应能量学,降低了水离解、氢吸附和氢脱附的活化能垒。因此,Pt SAL催化剂表现出优异的析氢反应(HER)性能,在过电位为50 mV时质量活性为1.71 A mg,比商业Pt/C高出6.35倍,比单原子催化剂高出7.68倍。值得注意的是,Pt SAL催化剂在10000次循环后活性衰减可忽略不计,密度泛函理论(DFT)计算将这种稳定性归因于强Pt-Mo界面键合。拉曼光谱研究揭示了动态界面水重构,加速了反应动力学。这项工作建立了一种用于贵金属单原子层催化剂的通用合成方法,并探索了它们在设计用于多相催化的高性能电催化剂中的作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验