Nguyen Huynh Quang Dieu, Nam Mi-Hyun, Vigh Jozsef, Brzezinski Joseph, Duncan Lucas, Park Daewon
Department of Bioengineering, University of Colorado Denver, Anschutz Medical Campus, 2115 N. Scranton St, Aurora, CO 80045, USA.
Department of Ophthalmology, University of Colorado School of Medicine, 1675 Aurora Court, Aurora, CO 80045, USA.
Acta Biomater. 2025 Jul 1;201:297-308. doi: 10.1016/j.actbio.2025.06.007. Epub 2025 Jun 5.
Traumatic optic neuropathies lead to retinal ganglion cell (RGC) death and axonal degeneration, primarily due to disrupted neurotrophic factor (NTF) supply from the brain and a neurotoxic cascade, potentially mediated by elevated retinal Zn²⁺ levels. Ciliary neurotrophic factor (CNTF) and brain-derived neurotrophic factor (BDNF) are two major NTFs known to support RGC survival and axon protection. Dipicolylamine (DPA), a Zn²⁺ chelator with high selectivity and affinity, offers a strategy to reduce excess Zn²⁺. To achieve sustained NTF delivery and Zn²⁺ reduction, we developed sulfonated poly(serinol hexamethylene urea) nanoparticles (S-PSHU NPs) co-loaded with CNTF, BDNF, and DPA. In vitro release studies demonstrated sustained release of CNTF and BDNF for up to 8 weeks and DPA for up to 4 weeks. In a rat optic nerve crush (ONC) model, DPA-loaded S-PSHU NPs showed dose-dependent elimination of retinal Zn²⁺. Additionally, in primary RGC culture, RGC activity and axon growth correlated with CNTF and BDNF dosage. In vivo, NTF-DPA-loaded S-PSHU NPs significantly enhanced RGC survival and axon protection post-ONC, as evidenced by cholera toxin subunit B (CTB)-labeled axons in the central visual centers of the brain, including the suprachiasmatic nucleus, lateral geniculate nucleus, and superior colliculus. STATEMENT OF SIGNIFICANCE: • Co-delivery of neurotrophic factors (NTFs: CNTF and BDNF) and a zinc chelator (dipicolylamine, DPA) promotes retinal ganglion cell (RGC) axon survival and protection. • Sustained release of NTFs for up to 8 weeks and DPA for up to 4 weeks. • DPA-loaded nanoparticles effectively eliminate excess retinal zinc after optic nerve injury. • NTF-DPA-loaded nanoparticles significantly improve RGC survival and axon protection in a rat optic nerve crush model.
创伤性视神经病变会导致视网膜神经节细胞(RGC)死亡和轴突退化,主要原因是大脑提供的神经营养因子(NTF)供应中断以及可能由视网膜锌离子(Zn²⁺)水平升高介导的神经毒性级联反应。睫状神经营养因子(CNTF)和脑源性神经营养因子(BDNF)是已知的两种主要支持RGC存活和轴突保护的NTF。二吡啶胺(DPA)是一种具有高选择性和亲和力的Zn²⁺螯合剂,提供了一种减少过量Zn²⁺的策略。为了实现NTF的持续递送和Zn²⁺的减少,我们开发了共负载CNTF、BDNF和DPA的磺化聚(丝氨醇六亚甲基脲)纳米颗粒(S-PSHU NPs)。体外释放研究表明,CNTF和BDNF可持续释放长达8周,DPA可持续释放长达4周。在大鼠视神经挤压(ONC)模型中,负载DPA的S-PSHU NPs显示出视网膜Zn²⁺的剂量依赖性消除。此外,在原代RGC培养中,RGC活性和轴突生长与CNTF和BDNF剂量相关。在体内,负载NTF-DPA的S-PSHU NPs在ONC后显著增强了RGC存活和轴突保护,这在大脑中央视觉中枢(包括视交叉上核、外侧膝状体核和上丘)中霍乱毒素B亚基(CTB)标记的轴突中得到了证明。重要性声明:• 神经营养因子(NTF:CNTF和BDNF)和锌螯合剂(二吡啶胺,DPA)的共同递送促进视网膜神经节细胞(RGC)轴突存活和保护。• NTF持续释放长达8周,DPA持续释放长达4周。• 负载DPA的纳米颗粒在视神经损伤后有效消除过量的视网膜锌。• 负载NTF-DPA的纳米颗粒在大鼠视神经挤压模型中显著改善RGC存活和轴突保护。