Suppr超能文献

网络多层集成工具箱(MINT)。

Multilayer Integration of Networks Toolbox (MINT).

作者信息

Sarraf Saman, Avelar-Pereira Bárbara, Hosseini S M Hadi

机构信息

Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA, USA.

Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden.

出版信息

Commun Biol. 2025 Jun 7;8(1):894. doi: 10.1038/s42003-025-08269-4.

Abstract

We present MINT (Multilayer Integration of Networks Toolbox), a Python package for multimodal data integration and community detection. MINT includes data standardization, Similarity Network Fusion, Generalized Louvain clustering, visualization, cross-validation, and modality selection optimization, capturing complex relationships among disease markers. We applied MINT to two multimodal datasets spanning the Alzheimer's disease (AD) spectrum: a primary cohort of 206 participants and a validation cohort of 143 participants, including structural magnetic resonance imaging (MRI), amyloid positron emission tomography (PET), cerebrospinal fluid (CSF), cognition, and genetics. We hypothesized that modeling intra- and inter-modality associations would improve AD prediction and identify preclinical cases. Across both datasets, MINT identified PET and CSF as optimal modalities and detected two communities: one AD-dominant and one cognitively normal-dominant (CN). Sensitivity and specificity for CN and AD were 84.38% (95% CI: 73.14-92.24) and 92.65% (95% CI: 83.67-97.57). The AD-dominant community exhibited poorer cognition and higher genetic risk and AD pathology (p < 0.001). CN individuals in this group showed elevated amyloid (p=0.009), tau (p=0.004), and ptau (p < 0.001) compared to AD individuals in the CN-dominant group. MINT can identify biologically relevant subgroups, predict disease progression, and serves as a powerful tool for uncovering complex relationships across heterogeneous and multifactorial disorders.

摘要

我们展示了MINT(网络多层集成工具箱),这是一个用于多模态数据集成和社区检测的Python包。MINT包括数据标准化、相似性网络融合、广义Louvain聚类、可视化、交叉验证和模态选择优化,捕捉疾病标志物之间的复杂关系。我们将MINT应用于两个跨越阿尔茨海默病(AD)谱系的多模态数据集:一个由206名参与者组成的主要队列和一个由143名参与者组成的验证队列,包括结构磁共振成像(MRI)、淀粉样蛋白正电子发射断层扫描(PET)、脑脊液(CSF)、认知和遗传学。我们假设对模态内和模态间关联进行建模将改善AD预测并识别临床前病例。在两个数据集中,MINT都将PET和CSF识别为最佳模态,并检测到两个社区:一个以AD为主,另一个以认知正常为主(CN)。CN和AD的敏感性和特异性分别为84.38%(95%CI:73.14 - 92.24)和92.65%(95%CI:83.67 - 97.57)。以AD为主的社区表现出较差的认知、更高的遗传风险和AD病理学(p < 0.001)。与以CN为主的组中的AD个体相比,该组中的CN个体显示出更高的淀粉样蛋白(p = 0.009)、tau(p = 0.004)和磷酸化tau(p < 0.001)。MINT可以识别生物学上相关的亚组,预测疾病进展,并作为揭示跨异质性和多因素疾病复杂关系的强大工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验