National Institute for Space Research, Associated Laboratory for Computing and Applied Mathematics, São José Dos Campos - SP, Brazil.
Department of Physics, Humboldt University, Berlin, Germany.
Nat Commun. 2020 Aug 12;11(1):4036. doi: 10.1038/s41467-020-17634-2.
The number of spatiotemporal data sets has increased rapidly in the last years, which demands robust and fast methods to extract information from this kind of data. Here, we propose a network-based model, called Chronnet, for spatiotemporal data analysis. The network construction process consists of dividing a geometric space into grid cells represented by nodes connected chronologically. Strong links in the network represent consecutive recurrent events between cells. The chronnet construction process is fast, making the model suitable to process large data sets. Using artificial and real data sets, we show how chronnets can capture data properties beyond simple statistics, like frequent patterns, spatial changes, outliers, and spatiotemporal clusters. Therefore, we conclude that chronnets represent a robust tool for the analysis of spatiotemporal data sets.
近年来,时空数据集的数量迅速增加,这就需要稳健且快速的方法从这类数据中提取信息。在这里,我们提出了一种基于网络的模型,称为 Chronnet,用于时空数据分析。网络构建过程包括将几何空间划分为由按时间顺序连接的节点表示的网格单元。网络中的强连接表示单元之间连续的重复事件。Chronnet 的构建过程很快,使得该模型适合处理大型数据集。使用人工和真实数据集,我们展示了 chronnet 如何捕获超出简单统计数据的属性,例如频繁模式、空间变化、异常值和时空聚类。因此,我们得出结论,chronnet 是分析时空数据集的强大工具。